Valuing Power Flow Control with PLEXOS®

Randell Johnson, PhD, P.E.
Regional Director
Energy Exemplar

January 15th, 2015
PLEXOS® Integrated Energy Model

- Proven power sector simulation tool - 36 Countries
- Uses mathematical programming, optimization and stochastic techniques (MIP, LP, SO)
 - Robust analytical framework, used by:
 - Energy Producers, Traders and Retailers
 - Transmission System/Market Operators
 - Energy Regulators/Commissions
 - Consultants, Analysts and Research Institutions
 - Power Plant Manufacturers and Construction Companies
- Power system model scalable to thousands of generators and transmission lines and nodes
- Multi-stage interleaved simulation from 1 min to 40 years
Power Flow Control Modelling in PLEXOS®

Challenge: Chronological Unit Commitment/Dispatch of Network Devices and Generators (conventional power flow snapshot analysis not sufficient for valuation)

- R&D for modeling the following devices/techniques:
 - Impedance-Control Devices
 - Mechanically-Switched Series Reactor (MSSR)
 - Distributed Series Reactor (DSR)
 - Magnetic Amplifier
 - Voltage-Injection Devices
 - Static Synchronous Series Compensator (SSSC)
 - Unified Power Flow Controller (UPFC)
 - Distributed Static Series Compensator (DSSC)
 - Phase-Angle Control Devices
 - Phase-shifting Transformer (PST)
 - Compact Dynamic Phase Angle Regulator (CDPAR)
 - Topology Control Techniques

- Production Cost – For short-term production studies, PLEXOS® will optimize the dispatch of the PFCs in the unit commitment.

- Capacity Planning – For long-term expansion studies, given a set of candidate lines and the types of PFCs to be deployed, PLEXOS® will produce an optimized build decision over the simulated horizon.
Transmission Modelling in PLEXOS®

- PLEXOS® uses a Linearized DC-OPF with both integrated and pre-computation of shift factors.
- Marginal Loss Modeling in PLEXOS®
- The SCUC algorithm in PLEXOS® computes contingency shift factors. These factors are used to monitor and enforce the contingency constraints.
- The SCUC in PLEXOS® can also support the "N-x" contingency analysis, that ensures "two or more simultaneous contingencies will not propagate into a cascading blackout".

Illustrative Formulation Generation Transmission Expansion Co-Optimization

Minimize \[\sum_{y=1}^{Y} \sum_{i=1}^{I} (\text{BuildCost}_i \times \text{Build}_{i,y}) + \sum_{t=1}^{T} \left(\sum_{i=1}^{I} \text{ProdCost}_i \times \text{Prod}_{i,t} \right) + \text{ShortCost} \times \text{Shortage}_t \]
subject to

Supply and Demand Balance: \[\sum_{i=1}^{I} \text{Prod}_{i,t} + \text{Shortage}_t = \text{Demand}_t \quad \forall t \]

Production Feasible: \[\text{Prod}_{i,t} \leq \text{ProdMax}_i \quad \forall i, t \]

Expansion Feasible: \[\text{Build}_{i,y} \leq \text{BuildMax}_{i,y} \quad \forall i, y \]

Integrality: \[\text{Build}_{i,y} \text{ integer} \]

Reliability: \[\text{LOLP}(\text{Build}_{i,y}) \leq \text{LOLPTarget} \quad \forall y \]
Case Study: Deploying PFCs on two NYISO Interfaces

- **PFC Valuation Case**
 - Compare benefits with and without PFCs on the elements of the UPNY-ConED and UPNY-SENY interfaces.

- **Interfaces**
 - UPNY-ConED: 10 PSTs
 - UPNY-SENY: 25 PSTs

- **Objective Function**
 - Minimize operational cost of footprint

- **Simulation Settings:**
 - Hourly Day Ahead Production Cost
 - Horizon: 1 Year
 - Thermal Limits Enforcement:
 - 115 kV for NYISO & NJ
 - 345 kV for Rest of the Footprint

- **System Model**
 - Study Footprint: NYISO + Tier 1 Neighbors
 - Nodal Transmission Model
 - Detailed Generator Properties
 - Fuel Price Hourly Forecast
 - ISO Hourly Demand Forecasts
 - **Based on Energy Exemplar EI database**

- **System Model Diagram**
 - Study Footprint: NYISO + Tier 1 Neighbors
 - 2500 Gens
 - 14,000 Nodes
 - Nodal Transmission Model
 - Detailed Generator Properties
 - Fuel Price Hourly Forecast
 - ISO Hourly Demand Forecasts
 - Based on Energy Exemplar EI database
Case Study: Economic Benefits of deploying Power Flow Controllers on the NYISO Interfaces

- Economic Benefits Metrics used in Planning Processes
 - B/C Ratio
 - Production Cost Savings
 - Congestion Savings
 - Other Savings

- Economic Metric used in Integrated Resource Plans
 - NPV Savings Least Capital and Operation Cost

UPNY-ConED Production Cost Benefits

<table>
<thead>
<tr>
<th></th>
<th>NYISO</th>
<th>PJM Classic+NY+NE</th>
</tr>
</thead>
<tbody>
<tr>
<td>+ - 5 degrees</td>
<td>$46</td>
<td>$36</td>
</tr>
<tr>
<td>+ - 30 degrees</td>
<td>$14</td>
<td>$123</td>
</tr>
</tbody>
</table>

UPNY-SENY Production Cost Benefits

<table>
<thead>
<tr>
<th></th>
<th>NYISO</th>
<th>PJM Classic+NY+NE</th>
</tr>
</thead>
<tbody>
<tr>
<td>+ - 5 degrees</td>
<td>$18</td>
<td>$52</td>
</tr>
<tr>
<td>+ - 30 degrees</td>
<td>$47</td>
<td>$198</td>
</tr>
</tbody>
</table>