Fed. funding: BN
\il |)\i \b/ Length 36 mo.

Integrated Power and Thermal Management for Connected
and Automated Vehicles (iPTM-CAV) Through Real-Time

Adaptation and Optimization
Jing Sun (P1), llya Kolmanovsky, Yiheng Feng, M. Reza Amini [University of Michigan]
Chris Mi [San Diego State University], Indrasis Chakraborty [PNNL]

Project Goal

Achieve 20% fuel saving target for CAV by
exploring power and thermal system integration in
CAV through prediction and real-time optimization

Current Technical Status

Initial eco-driving testing confirms the viability of the
technical approach. Further energy saving achieved
through eco-cooling/heating of the cabin and battery.
Implementation of iPTM on the test vehicle is underway.




Technical Accomplishments

O Design Eco-trajectories with consideration of traffic signals and queuing
dynamics via V21 communication, and of cut-in intention via V2V

Dﬁf/?r;g- 0 Build and calibrate microscopic simulation models based on real-world traffic
patterns
| O Eco-driving experiments on the test vehicle
Eco- [ O Real-time implementation of Hierarchical MPC (H-MPC) for cabin Eco-

Cooling] cooling
L O Comfort-based predictive cabin Eco-cooling for improved energy efficiency

Eco- " 0O Multi-dimensional DP for integrated engine and cabin thermal management
Heating] O PMP-based optimization for integrated power and thermal management

Integration-[ a Sequential optimization with Eco-driving, Eco-cooling, and power split optimization

" 0 High-efficiency internal battery preheating in winter
O Battery temperature optimization for reducing the energy loss exploiting
traffic preview
| O Hierarchical MPC (H-MPC) for EV battery Eco-cooling

Management
1

0 Sensitivity analysis of the thermal responses of connected HEVs engine and
aftertreatment systems to Eco-Driving
0O Neural network-based co-optimization of aftertreatment and powertrain with
incorporated traffic preview

Aftertreatment Battery Thermal

Co-Optimization
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Hierarchical MPC (H-MPC) for Cabin Eco-Cooling
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IPTM-CAVs: Sequential optimization with
Eco-driving, Eco-cooling, and power split optimization
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IPTM-CAVs: Sequential optimization
Stage I: Eco-driving (CAV-Based Vehicle Speed Optimization)

% Plymouth Road corridor (2.2 miles, ey
. . ange
6 intersections)
% 50 cases simulated o

» Shockwave profile model to estimate
the queuing dynamics at an intersection

» Provide a green window for Eco vehicle
to plan trajectory
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IPTM-CAVs: Sequential optimization
Stage I+1l: Eco-driving + Eco-cooling (A/C Thermal Load Optimization)

s Optimize A/C power load by exploiting
» Predictive vehicle speed Speed Optimization
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IPTM-CAVs: Sequential optimization
Stage I+11+l11l: Eco-driving + Eco-cooling + Power Split Optimization
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optimized power and thermal load B Eco-Driving
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Tech-to-Market Strategy

» Market Approach — new vehicles
— Primary: OEM partnership
» Collaboration with Ford Motor Company

= MPC-based Precision Cooling Strategy (PCS) for Efficient Thermal Management of Automotive Air
Conditioning System

= Robust Power and Thermal Management (PTM) Incorporating Traffic Preview
+* A collaborative project has been established with Ford Motor Company since October 2018
— Secondary: Supplier partnership

> Initial Market(s)/Value Proposition
— Traffic modeling

- Estimating real-time and predicting short-term traffic conditions to support thermal and power
demand prediction

— Predictive thermal management

« Modeling battery thermal status to support a battery thermal management to enable operation at
optimum temperature

— Co-optimization of engine and after-treatment
— Real-time optimization
 Integration of climate control system with the powertrain system for HEV
> Verification and Validation
— Mcity
— American Center for Mobility
Cll ")| b o H(C
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Key Lessons Learned & Main Findings

a Major fuel/energy consumption benefits come from eco-trajectory planning

O Due to the time-scale difference between the power and thermal systems,
multi time-scale and multi-layer optimization approach is required for IPTM

Q Incorporating the traffic preview allows for effective thermal load shift

Q Integrated engine thermal and cabin heating optimization allows for eco-
heating and further energy saving in winter

Q Eco-driving could impact the thermal responses of the engine and
aftertreatment system unfavorably

O Reducing the battery internal loss is the key to save energy in battery
thermal management system
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Current Challenges

O Reliability of long-term predictions of the traffic states required for eco-
driving and eco-cooling

O Robustness of Eco-Cooling/Heating to uncertainties associated with
long-term traffic prediction

O Implementation of Eco-Cooling/Heating strategies on the test vehicle
given the limited control authority over the test vehicle

O Robustness of the trajectory planning algorithm to the change of
penetration rate of CAV and its impact on the fuel economy
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