### Text and Data Mining for Material Synthesis

<u>Elsa Olivetti, MIT</u> Gerbrand Ceder, UC Berkeley Departments of Materials Science & Engineering

Andrew McCallum, UMass Amherst Department of Computer Science & Engineering



1

#### Challenges for technology development: Timeline for development is long



### Modern data-driven and first-principles materials design accelerates pace of what to make...



3





#### Text extraction workflow



#### Status of data dissemination





## Example: suggesting synthesis conditions for a specific morphology in titania



Experimentally-accessible (and reported) variables to facilitate practical synthesis route planning.

### Virtual *synthesis* screening is hard: data is sparse & scarce

"Sparse" = high-dimensional vector of synthesis actions "Scarce" = materials of interest  $\rightarrow$  not many papers published to train on

Can deep learning / generative models be useful for synthesis screening?

#### Schematic of Variational Autoencoder



Low-dimensional Latent Synthesis Space

Edward Kim et al., npj Computational Materials 2017

Variational autoencoder:

- Loss = reconstruction + f(Gaussian)
- Also a generative model

Collaborator, Stefanie Jegelka, CSAIL, MIT

#### Data augmentation with text & data mining



Edward Kim et al., npj Computational Materials 2017

## Example: suggesting synthesis conditions for stabilizing desired materials



Edward Kim et al., npj Computational Materials 2017

#### Exploratory: Rare phase in common material



Edward Kim et al., npj Computational Materials 2017

# Comparison of literature / virtual samples for $SrTiO_3$ synthesis

| Calcination      | Sintering   | Annealing          | NaOH (M) | Reference              |
|------------------|-------------|--------------------|----------|------------------------|
| 800C, 2h         | -           | -                  | 1        | Ye et al, 2016         |
| 800C, 2h         | 1250C, 2h   | -                  | -        | Zhao et al, 2004       |
| 1000C, 12h       | -           | 500C, 2h           | -        | Zhao et al, 2015       |
| 600-750C, 4h     | -           | -                  | -        | Puangpetch et al, 2008 |
| 721C, 1.8h       | -           | 468C <i>,</i> 0.4h | -        | N/A                    |
| -                | -           | 450C, 0.9h         | 1        | N/A                    |
| 955C <i>,</i> 6h | 1182C, 7.5h | -                  | -        | N/A                    |

One cannot train a model exclusively on literature data and classify something as successful or not, since there are no negative examples in the literature

Edward Kim et al., npj Computational Materials 2017

# Key elements in machine learning for energy technology



Ramprasad et al npj computational materials, 2017

#### Applicability and Next steps

- Continue to improve pipeline and disseminate information to the community
- Inform structure for data going forward
- Use cases in:
  - Solid state synthesis, hydrothermal and sol gel methods
  - Alloy design
  - Electrolyte performance

#### Thank you olivetti.mit.edu synthesisproject.org

