Overview of Supercritical Carbon Dioxide Based Power Cycles for Stationary Power Generation

Presented to: ARPA-E Workshop on High Efficiency High Temp. Modular Power Utilizing Innovative Designs, Materials, and Manufacturing Techniques **Cancel 20 and 19 - 20, 2017**

Richard Dennis Technology Manager Advanced Turbines and Supercritical CO2 Power Cycles Programs US DOE Office of Fossil Energy NETL

Presentation Outline

Overview of Supercritical Carbon Dioxide Based Power Cycles for Stationary Power Generation

- **Introduction to NETL**
- **DOE's Program on sCO₂ Based Power Cycles**
- Overview of sCO₂ Cycles of interested to FE
- FE System Studies with sCO₂ Power Cycles
	- Cost and performance
- **Technology Challenges**
- **Key Projects**
- **Summary and Conclusions**

NETL Core Competencies & Mission

MISSION - Discover, integrate, and mature technology solutions to enhance the nation's energy foundation and protect the environment for future generations

FE Base Program in sCO₂ Power Cycles

Two related cycles for advanced combustion and gasification applications

Indirectly-heated cycle (RCB cycle)

- Cycle to be used for 10 MW sCO₂ pilot plant
- **Applicable to advanced combustion boilers**
- **Incumbent to beat: USC/AUSC boilers**
- **>50% cycle eff. (work out/heat in) possible**
- **High fluid density, low pressure ratio yields compact turbomachinery**
- **Ideally suited to constant temp heat sources (NE and CSP)**

National Energy

Technology Laboratory

• **Adaptable for dry cooling**

S. DEPARTMENT OF

Directly-heated cycle (Allam cycle) • **Fuel flexible: coal syngas and natural gas**

- **Incumbent to beat: Adv. F- or H-class NGCC w/ post CCS**
- **Compatible w/ RD&D from indirect cycle**
- $>95^{\circ}$ % CO₂ capture at storage pressure
- **Net water producer, if dry-cooled**

FE Programs Supporting sCO₂ Technology

AES (AT & ACS), Crosscutting Technology Research and STEP

• **FE Base sCO₂ Technology Program**

- $sCO₂$ cycle component development funded by individual programs
- Specific interest in adv. combustion indirect cycle & IGCC direct cycle
- Near term application to natural gas

• **DOE sCO₂ Crosscut Initiative**

- ⁻ Collaboration between DOE Offices (FE, NE, and EERE)
- Mission: Address technical issues, reduce risks, and mature technology
- ⁻ Objective/Goal: Design, build, and test 10 MWe Supercritical Transformational Electric Power (STEP) pilot facility
- FE designated budget focal for Crosscut Initiative and STEP

Why supercritical CO₂ (sCO₂)?

 $sCO₂$ is an ideal fluid for the applications of interest – replacing steam

• **Moderate conditions for supercritical state**

- $CO₂$ Critical Point
	- Temperature: 31.06 C, (87.9 °F)
	- Pressure: 7.4 MPa, (1071.8 psia)
- Approximately 50% increase in specific heat (Cp) around critical point at likely cycle conditions

• **Excellent fluid properties**

- Liquid-like densities around the cycle
	- Relatively low critical point temperature
- Increased density and heat capacity, and reduced compressibility factor near critical point
- Non-Toxic

Oxy-CFB Coal-fired Rankine Cycle Power Plant

Steam Rankine Comparison Cases

- **LP Cryogenic ASU**
	- 99.5% O_2
	- 3.1% excess $O₂$ to CFB
- **Atmospheric oxy-CFB**
	- Bituminous coal
	- 99% carbon conversion
	- In-bed sulfur capture (94%), 140% excess $CaCO₃$
	- Infiltration air 2% of air to ASU MAC
- **Operating conditions for Rankine plants**
	- Supercritical (SC) Rankine cycle (Case B22F: 24.2 MPa/ 600 °C/ 600 °C)
	- Advanced ultra-supercritical (AUSC) Rankine cycle (Case B24F: 24.2 MPa/ 760 °C / 760 °C)
- **No low temperature flue gas heat recovery**
- **45% flue gas recycle to CFB**
- **CO**₂ purification unit
	- \sim 100% CO₂ purity
	- 96% carbon recovery

Source: NETL

8

Oxy-CFB Coal-fired Indirect sCO₂ Power Plant

Baseline sCO₂ process

- **LP Cryogenic ASU**
	- 99.5% O_2
	- 3.1% excess O_2 to CFB
- **Atmospheric oxy-CFB**
	- Bituminous coal
	- 99% carbon conversion
	- In-bed sulfur capture (94%), 140% excess $CaCO₃$
	- Infiltration air 2% of air to ASU MAC
- **Recompression sCO₂ Brayton cycle**
	- Turbine inlet temperature 620 °C and
	- Turbine inlet temperature 760 °C
- Low temperature flue gas heat recovery in $sCO₂$ power cycle
- **45% flue gas recycle to CFB**
- **CO**₂ purification unit

U.S. DEPARTMENT OF

- \sim 100% CO₂ purity
- 96% carbon recovery

Oxy-CFB Coal-fired Indirect sCO₂ Power Plant

sCO₂ cycle configurations analyzed

- **Baseline configuration**
- Reheat sCO₂ turbine
- Intercooled 2-stage main sCO₂ **compressor**
- Reheat sCO₂ turbine and Intercooled main sCO₂ **compressor**

.S. DEPARTMENT OF **VERGY**

Summary of Overall Plant HHV Efficiencies

• **Relative to the steam Rankine cycles:**

- At 620 °C, sCO₂ cycles are $1.1 3.2$ percentage points higher in efficiency
- At 760 \degree C, sCO₂ cycles are 2.6 4.3 percentage points higher
- The addition of reheat improves sCO₂ **cycle efficiency by 1.3 – 1.5 percentage points**
- **The addition of main compressor intercooling improves efficiency by 0.4 – 0.6 percentage points**
	- Main compressor intercooling reduces compressor power requirements for *both* the main and bypass compressors

S. DEPARTMENT OF

Summary of COE

Steam Rankine vs. $sCO₂$ Cases

- **Note that there is significant uncertainty** in the CFB and $\frac{\text{COS}}{\text{COS}}$ component capital costs $(-15\% \text{ to } +50\%)$
- **Large capital cost uncertainties being addressed in projects funded by NETL, EPRI and OEM(s):**
	- sCO₂ turbine (GE, Doosan, Siemens)
	- Recuperators (Thar Energy, Brayton Energy, Altex)
	- Primary heat exchanger (B&W, GE)
- **sCO2 cases have comparable COE to steam Rankine plant at 620 °C, and lower COE for 760 °C cases**
- **Main compressor intercooling improves COE 2.2 – 3.5 \$/MWh**
	- Low cost means of reducing $sCO₂$ cycle mass flow
- Reheat reduces the COE for the 620 ^oC cases, but increases COE for turbine inlet **temperatures of 760 °C**
	- Due to the high cost of materials for the reheat portions of the cycle in 760 °C cases

12

NATIONAL

HNOLOGY

Comparison of sCO₂ versus Rankine Cases

COE vs. Process Efficiency Analysis, with CCS

- **Reference: Supercritical Oxy- combustion CFB with Auto- refrigerated CPU (Case B22F)**
	- $$0/tonne CO₂ Revenue$
	- 550 MWe
- **COE reductions are relative to** **an air fired, supercritical PC coal plant with CCS (B12B)**
- **Higher efficiency and lower COE** for **sCO**₂ **cycles relative to steam**
	- Large uncertainty in commercial scale $sCO₂$ component costs
- **Further improvements to the sCO₂ cycle are currently under investigation**

sCO₂ and IGCC Performance Comparison

13

All cases use same coal and gasifier, w/CCS

- **sCO**₂ plants achieve greater efficiency **due to** cycle **efficiency differences**
	- Generate 13-22% more net power on 6% percent less coal, but ~2.5x more oxygen needed
- **Case 2 has 2.9 percentage point higher** efficiency compared to Baseline sCO₂ **plant**
	- Generates 8% more net power using the same coal feed and 3% more aux power
- **All plants require about 26% of gross power output for auxiliaries**
- **sCO**₂ plants capture more carbon
	- IGCC capture limited by water-gas shift reaction and Selexol process
	- Case 2 eliminates syngas fuel in coal dryer

Gasification Based Direct SCO2 Power Cycle

Preliminary Performance Comparison

- **sCO**₂ plant achieves greater efficiency, 37.7% **vs. 31.2%, due to** cycle **efficiency differences**
	- Generates 13% more net power
	- Requires 6% percent less coal
- **sCO**₂ plant achieves greater carbon capture **fraction**
	- IGCC capture limited by water-gas shift reaction and Selexol process
- **Similar results obtained in 2014 EPRI study2**
	- sCO_2 net HHV plant efficiency of 39.6% with 99.2% CO₂ capture at 98.1% purity

² Electric Power Research Institute (EPRI). (2014, December). Performance and Economic Evaluation of Supercritical CO2 Power Cycle Coal Gasification Plant (3002003734). Palo Alto, California.

⁵ National Energy Technology Laboratory (NETL). (2015, July 31). Cost and Performance Baseline for Fossil Energy Plants, Volume 1b: Bituminous Coal (IGCC) to Electricity, Revision 2b – Year Dollar Update. DOE/NETL-2015/1727, Pittsburgh, Pennsylvania.

Direct-Fired Supercritical CO₂ Power Cycle," First Workshop on High Efficiency, Low Emissions 14
Coal-Fired Plant (HELE2016) Tokyo Japan, May 23, 2016 Source: Weiland, N., Shelton, W., and White, C., "Performance of an Integrated Gasification Coal-Fired Plant (HELE2016), Tokyo, Japan, May 23, 2016.

NGCC with Post Combustion CO₂ Capture

Incumbent to Beat for Direct NG fueled sCO₂ Power Cycles

Analysis underway for sCO₂ direct-fired plant **with natural gas feed**

U.S. DEPARTMENT OF

1 National Energy Technology Laboratory (NETL). (2015, July 6). Cost and Performance Baseline for Fossil Energy Plants, Volume 1a: Bituminous Coal (PC) and Natural Gas to Electricity, Revision 3. DOE/NETL-2015/1723, Pittsburgh, Pennsylvania ² National Energy Technology Laboratory (NETL). (2012, June 25). Post Combustion Carbon Capture Approaches for Natural Gas Combined Cycle (NGCC) Power Plants. DOE/NETL-341/061812. Pittsburgh, Pennsylvania

NATIONAL

Technical Challenges for SCO2 Power Cycles

For fossil energy applications – Recompression Brayton cycles

- **Need to demonstrate cycle efficiencies greater than 50%**
	- Expanders $\geq 92\%$
	- Compressors ≥ 85
- **Material performance and cost**
- **Balanced recuperator performance**
	- effectives, pressure drop, approach temperature and cost
- **Primary heat soruce and cycle integration**
	- Low temperature heat addition
	- Energy flux
	- Pressure drop

Recompression Closed Brayton Cycle

~ 2/3 of the heat in the cycle is recuperated

Pressure vs. Specific Enthalpy Diagram

Material Limits

**– Advanced Ultra-supercritical Component Demonstration" NETL 2017 Crosscutting Research 18
Project Review Meeting March 23, 2017 Pittsburgh, PA** Source: EPRI, Project FE0025064 "Materials for Advanced Ultra-supercritical Steam Turbines Project Review Meeting, March 23, 2017, Pittsburgh, PA.

Materials – Summary

R&D suggests that there is a pathway to acceptable material life

- **Ferritic and austenitic steels perform well at or below 400°C**
- **Higher alloyed Fe- and Ni-based steels perform well up 600°C**
- **Ni-based alloys most promising for > 700°C**
- **Future work**
	- Longer term testing for corrosion
	- Additional evaluation of O_2 and H_2O effects
	- Additional mechanical testing (creep and fatigue) in $sCO₂$ environment
	- Evaluate materials specifically for recuperator applications (creep, fatigue, corrosion, bonding)
	- Higher temperature (≥800°C) testing for direct-fired cycles

sCO2 Power Cycle Technology Program

FY2017 FE Project Portfolio – Performers and FE Program Funding Sources

ADVANCED COMBUSTION SYSTEMS

Recuperators

Brayton Energy Altex Technologies Oregon State University Thar Energy

Systems Integration & Optimization

Southwest Research Institute Electric Power Research Institute

Materials

ADVANCED TURBINES

Turbomachinery

General Electric Company

Advanced Concepts for Direct-Fired Cycles

Southwest Research Institute NETL-RIC University of Central Florida (UTSR Award) Georgia Tech (UTSR Award)

Materials Oak Ridge National Laboratory

STEP

Thar Energy (advanced recuperator) Gas Technology Institute (10 MW $sCO₂$ pilot plant)

CROSSCUTTING TECHNOLOGY RESEARCH

Materials Oak Ridge National Laboratory Electric Power Research Institute

Supercritical Carbon Dioxide 10 MWe Pilot Plant Test Facility

Gas Technology Institute

Objectives

- Plan, design, build, and operate a 10 MWe $sCO₂$ Pilot Plant Test Facility
- Demonstrate the operability of the $sCO₂$ power cycle
- Verify performance of components (turbomachinery, recuperators, compressors, etc.)
- Evaluate system and component performance capabilities
	- Steady state, transient, load following, limited endurance operation
- Demonstrate potential for producing a lower COE and thermodynamic efficiency greater than 50%

GAS TECHNOLOGY INSTITUTE

NATIONAL Baseline 700°C 10 MWe RCB Cycle Diagram ENERGY TECHNOLOGY **LABORATORY** NETL Basis for Cost Estimate of STEP Facility (similar to what will be built) 21 °C 500 °C 30 °C **Fan** 0.111 MPa 0.101 MPa 0.107 MPa **Burner** $1.\overline{2}$ MW 112.7 kg/s 43.1 MW_{*} Air Natural Gas **Stack** 204 °C **Air Preheater** 55.6 MW_{th} 0.101 MPa 0.92 kg/s 194 °C 113.6 kg/s 23.99 MPa 816 °C 649 °C 0.107 MPa 0.105 MPa 194 °C 23.99 MPa 78 °C **Primary Heater** 104.5 kg/s **Motor** 22.2 MW_{th} 24.13 MPa 700 °C 533 °C **HT Recup LT Recup** 23.72 MPa 23.86 MPa 46.6 MW_{th} 15.2 MW $_{\text{th}}$ **Main Comp** 2.2 MW_{sh} Cooler 204 °C $\eta_{\rm comp} = 82\%$ 11.8 MW_{th} **Motor** 8.83 MPa 88 °C **Turbine** Gen Load 8.69 MPa 15.3 MW $_{\rm sh}$ 35 °C **Bank** $n_{\text{turb}} = 85\%$ 34.2 kg/s 8.55 MPa **Bypass Comp** 70.3 kg/s 2.7 MW_{sh} 581 °C $\eta_{\text{comp}} = 78\%$ 8.96 MPa 33 °C 22 °C $CO₂$ 104.5 kg/s 254.1 kg/s Air **Circ. Water Pump** $22 °C$ R Water 379 L/min Make-up Water **Natural Gas Cooling Tower** Comb. Prod. Air

Summary and Conclusions

Overview of Supercritical Carbon Dioxide Based Power Cycles for Stationary Power Generation

- **Power cycles based on sCO**₂ offer benefits to stationary power production
	- RCB cycle for CSP, nuclear on fossil energy heat sources
	- Allam cycle offers benefits to gaseous carbon based fuels with $CO₂$ capture
- **DOE's sCO₂ CCI and the Offices of FE, NE and EERE have invested** significantly to develop sCO₂ power cycle technology
- **Projects are resolving technical issues (public and private investment)**
- **Technical issues remain**
	- Materials
	- Heat source power cycle integration
	- Component development, optimization and demonstration (turbines, compressors and recuperators)
	- Cycle performance and cost

Supercritical CO2 Power Cycle Conditions

 1% O₂

 $SO₂$ **HCl**

FE conditions for the recompression Brayton Cycle (indirect) and Allam Cycle (direct)

