Overview of Supercritical Carbon Dioxide Based Power Cycles for Stationary Power Generation

October 19 - 20, 2017

Presented to: ARPA-E Workshop on High Efficiency High Temp. Modular Power Utilizing Innovative Designs, Materials, and Manufacturing Techniques

Richard Dennis Technology Manager Advanced Turbines and Supercritical CO₂ Power Cycles Programs US DOE Office of Fossil Energy NETL

Presentation Outline

Overview of Supercritical Carbon Dioxide Based Power Cycles for Stationary Power Generation

- Introduction to NETL
- DOE's Program on sCO₂ Based Power Cycles
- Overview of sCO₂ Cycles of interested to FE
- FE System Studies with sCO₂ Power Cycles
 - Cost and performance
- Technology Challenges
- Key Projects
- Summary and Conclusions

NETL Core Competencies & Mission

MISSION - Discover, integrate, and mature technology solutions to enhance the nation's energy foundation and protect the environment for future generations

Computational Science & Engineering	Materials Engineering & Manufacturing	Geological & Environmental Systems	Energy Conversion Engineering	Systems Engineering & Analysis	Program Execution & Integration
 High Performance Computing Data Analytics 	 Structural & Functional Design, Synthesis, & Performance 	 Air, Water & Geology Understanding & Mitigation 	 Component & Device Design & Validation 	 Process Systems Optimization Validation & Uncertainty Economics Energy Market Modeling Grid Life Cycle Analysis 	 Technical Project Management Market & Regulatory Analysis

FE Base Program in sCO₂ Power Cycles

Two related cycles for advanced combustion and gasification applications

Indirectly-heated cycle (RCB cycle)

- Cycle to be used for 10 MW sCO₂ pilot plant
- Applicable to advanced combustion boilers
- Incumbent to beat: USC/AUSC boilers
- >50% cycle eff. (work out/heat in) possible
- High fluid density, low pressure ratio yields compact turbomachinery
- Ideally suited to constant temp heat sources (NE and CSP)

National Energy

Technology Laboratory

• Adaptable for dry cooling

S. DEPARTMENT OF

cycle)Directly-heated cycle (Allam cycle)ot plant• Fuel flexible: coal syngas and natural gas

- Incumbent to beat: Adv. F- or H-class NGCC w/ post CCS
- Compatible w/ RD&D from indirect cycle
- >95⁺ % CO₂ capture at storage pressure
- Net water producer, if dry-cooled

FE Programs Supporting sCO₂ Technology

AES (AT & ACS), Crosscutting Technology Research and STEP

• FE Base sCO₂ Technology Program

- sCO₂ cycle component development funded by individual programs
- Specific interest in adv. combustion indirect cycle & IGCC direct cycle
- Near term application to natural gas

• DOE sCO₂ Crosscut Initiative

- Collaboration between DOE Offices (FE, NE, and EERE)
- Mission: Address technical issues, reduce risks, and mature technology
- Objective/Goal: Design, build, and test 10 MWe
 Supercritical Transformational Electric Power (STEP) pilot facility
- ⁻ FE designated budget focal for Crosscut Initiative and STEP

sCO₂ is an ideal fluid for the applications of interest – replacing steam Moderate conditions for supercritical state

- CO₂ Critical Point
 - Temperature: 31.06 C , (87.9 °F)
 - Pressure: 7.4 MPa, (1071.8 psia)
- Approximately 50% increase in specific heat (Cp) around critical point at likely cycle conditions

• Excellent fluid properties

- Liquid-like densities around the cycle
 - Relatively low critical point temperature
- Increased density and heat capacity, and reduced compressibility factor near critical point
- Non-Toxic

Why supercritical CO₂ (sCO₂)?

Oxy-CFB Coal-fired Rankine Cycle Power Plant

Steam Rankine Comparison Cases

- LP Cryogenic ASU
 - 99.5% O₂
 - 3.1% excess O_2 to CFB
- Atmospheric oxy-CFB
 - Bituminous coal
 - 99% carbon conversion
 - In-bed sulfur capture (94%), 140% excess CaCO₃
 - Infiltration air 2% of air to ASU MAC
- Operating conditions for Rankine plants
 - Supercritical (SC) Rankine cycle (Case B22F: 24.2 MPa/ 600 °C/ 600 °C)
 - Advanced ultra-supercritical (AUSC) Rankine cycle (Case B24F: 24.2 MPa/ 760 °C / 760 °C)
- No low temperature flue gas heat recovery
- 45% flue gas recycle to CFB
- CO₂ purification unit
 - ~100% CO₂ purity
 - 96% carbon recovery

Source: NETL

8

Oxy-CFB Coal-fired Indirect sCO₂ Power Plant

Baseline sCO₂ process

- LP Cryogenic ASU
 - 99.5% O₂
 - 3.1% excess O_2 to CFB
- Atmospheric oxy-CFB
 - Bituminous coal
 - 99% carbon conversion
 - In-bed sulfur capture (94%), 140% excess CaCO₃
 - Infiltration air 2% of air to ASU MAC
- Recompression sCO₂ Brayton cycle
 - Turbine inlet temperature 620 °C and
 - Turbine inlet temperature 760 °C
- Low temperature flue gas heat recovery in sCO₂ power cycle
- 45% flue gas recycle to CFB
- CO₂ purification unit

U.S. DEPARTMENT OF

- ~100% CO₂ purity
- 96% carbon recovery

Oxy-CFB Coal-fired Indirect sCO₂ Power Plant

sCO₂ cycle configurations analyzed

- Baseline configuration
- Reheat sCO₂ turbine
- Intercooled 2-stage main sCO₂ compressor
- Reheat sCO₂ turbine and Intercooled main sCO₂ compressor

S. DEPARTMENT OF

Summary of Overall Plant HHV Efficiencies

• Relative to the steam Rankine cycles:

- At 620 °C, sCO₂ cycles are 1.1 3.2 percentage points higher in efficiency
- At 760 °C, sCO₂ cycles are 2.6 4.3 percentage points higher
- The addition of reheat improves sCO₂ cycle efficiency by 1.3 – 1.5 percentage points
- The addition of main compressor intercooling improves efficiency by 0.4 - 0.6 percentage points
 - Main compressor intercooling reduces compressor power requirements for *both* the main and bypass compressors

Power Summary (MW)	B22F	Base	IC	Reheat	Reheat+IC
Coal Thermal Input	1,635	1,586	1,557	1,519	1,494
sCO ₂ Turbine Power	721	1,006	933	980	913
CO ₂ Main Compressor		160	154	148	142
CO ₂ Bypass Compressor		124	60	117	58
Net sCO ₂ Cycle Power	721	711	708	704	702
Air Separation Unit	85	83	81	79	78
Carbon Purification Unit	60	56	55	54	53
Total Auxiliaries, MWe	171	161	158	154	152
Net Power, MWe	550	550	550	550	550

Summary of COE

Steam Rankine vs. sCO₂ Cases

- Note that there is significant uncertainty in the CFB and sCO₂ component capital costs (-15% to +50%)
- Large capital cost uncertainties being addressed in projects funded by NETL, EPRI and OEM(s):
 - sCO₂ turbine (GE, Doosan, Siemens)
 - Recuperators (Thar Energy, Brayton Energy, Altex)
 - Primary heat exchanger (B&W, GE)
- sCO₂ cases have comparable COE to steam Rankine plant at 620 °C, and lower COE for 760 °C cases
- Main compressor intercooling improves COE 2.2 3.5 \$/MWh
 - Low cost means of reducing sCO_2 cycle mass flow
- Reheat reduces the COE for the 620 °C cases, but increases COE for turbine inlet temperatures of 760 °C
 - Due to the high cost of materials for the reheat portions of the cycle in 760 °C cases

12

NATIONAL

Comparison of sCO₂ versus Rankine Cases

COE vs. Process Efficiency Analysis, with CCS

- Reference: Supercritical Oxycombustion CFB with Autorefrigerated CPU (Case B22F)
 - \$0/tonne CO₂ Revenue
 - 550 MWe
- COE reductions are relative to an air fired, supercritical PC coal plant with CCS (B12B)
- Higher efficiency and lower COE for sCO₂ cycles relative to steam
 - Large uncertainty in commercial scale sCO₂ component costs
- Further improvements to the sCO₂ cycle are currently under investigation

sCO₂ and IGCC Performance Comparison

13

All cases use same coal and gasifier, w/CCS

- sCO₂ plants achieve greater efficiency due to *cycle* efficiency differences
 - Generate 13-22% more net power on 6% percent less coal, but ~2.5x more oxygen needed
- Case 2 has 2.9 percentage point higher efficiency compared to Baseline sCO₂ plant
 - Generates 8% more net power using the same coal feed and 3% more aux power
- All plants require about 26% of gross power output for auxiliaries
- sCO₂ plants capture more carbon
 - IGCC capture limited by water-gas shift reaction and Selexol process
 - Case 2 eliminates syngas fuel in coal dryer

Parameter	IGCC [5]	sCO ₂ Baseline	sCO ₂ Case 2
Coal flow rate (kg/hr)	211,040	198,059	198,059
Oxygen flow rate (kg/hr)	160,514	391,227	394,234
sCO ₂ flow rate (kg/hr)		7,243,859	7,734,832
Carbon capture fraction (%)	90.1	97.6	99.4
Captured CO_2 purity (mol% CO_2)	99.99	99.80	99.80
Net plant efficiency (HHV %)	31.2	37.7	40.6
sCO ₂ power cycle efficiency (%)		61.7	61.9
F-frame gas turb. efficiency (HHV %)	35.9		
Steam power cycle efficiency (%)	39.0		
Raw water withdrawal (m ³ /s)	0.355	0.340	0.337
Power summary (MW)			
Coal thermal input (HHV)	1,591	1,493	1,493
Steam turbine power output	209	0	0
Gas turbine power output	464	0	0
sCO ₂ turbine power output	0	777	828
Gross power output	673	777	828
Total auxiliary power load	177	215	222
Net power output	497	562	606

Gasification Based Direct SCO2 Power Cycle

Preliminary Performance Comparison

- sCO₂ plant achieves greater efficiency, 37.7% vs. 31.2%, due to *cycle* efficiency differences
 - Generates 13% more net power
 - Requires 6% percent less coal
- sCO₂ plant achieves greater carbon capture fraction
 - IGCC capture limited by water-gas shift reaction and Selexol process
- Similar results obtained in 2014 EPRI study²
 - sCO_2 net HHV plant efficiency of 39.6% with 99.2% CO_2 capture at 98.1% purity

Parameter	IGCC	sCO ₂ Cycle	EPRI sCO ₂ Cycle ²
Net power output (MWe)	497	562	583
Net plant efficiency (HHV %)	31.2	37.7	39.6
COE (w/o T&S) (2011\$/MWh)	152.6	136.4	127.7
Carbon capture fraction (%)	90	98	99

Parameter	IGCC⁵	sCO ₂ Cycle		
Coal flow rate (kg/hr)	211,040	198,059		
Oxygen flow rate (kg/hr)	160,514	391,227		
sCO ₂ flow rate (kg/hr)		7,243,859		
Carbon capture fraction (%)	90.1	97.6		
Captured CO_2 purity (mol% CO_2)	99.99	99.80		
Net plant efficiency (HHV %)	31.2	37.7		
sCO ₂ power cycle efficiency (%)		55.4		
F-frame gas turbine efficiency (HHV %)	35.9			
Steam power cycle efficiency (%)	39.0			
Raw water withdrawal (m ³ /s)	0.355	0.340		
Carbon conversion (%)	99.5	99.5		
Power summary (MW)				
Coal thermal input (HHV)	1,591	1,493		
Steam turbine power output	209	0		
Gas turbine power output	464	0		
sCO ₂ turbine power output	0	777		
Gross power output	673	777		
Total auxiliary power load	177	215		
Net power output	497	562		

U.S. DEPARTMENT OF ENERGY ² Electric Power Research Institute (EPRI). (2014, December). Performance and Economic Evaluation of Supercritical CO2 Power Cycle Coal Gasification Plant (3002003734). Palo Alto, California.

⁵ National Energy Technology Laboratory (NETL). (2015, July 31). Cost and Performance Baseline for Fossil Energy Plants, Volume 1b: Bituminous Coal (IGCC) to Electricity, Revision 2b – Year Dollar Update. DOE/NETL-2015/1727, Pittsburgh, Pennsylvania. Source: Weiland, N., Shelton, W., and White, C., "Performance of an Integrated Gasification Direct-Fired Supercritical CO₂ Power Cycle," First Workshop on High Efficiency, Low Emissions 14 Coal-Fired Plant (HELE2016), Tokyo, Japan, May 23, 2016.

NGCC with Post Combustion CO₂ Capture

Incumbent to Beat for Direct NG fueled sCO₂ Power Cycles

	NGCC Baseline Cases			
	F-Class Turbine		H-Frame Turbine	
Case	B31A ¹	B31B ¹	2b ²	
Net power output (MWe)	630	559	721	
Carbon capture %	0	90	Yes	
Steam cycle	2400 psig/1050°F/ 1050°F		2400 psig/1075°F/ 1075°F	
Net Plant Efficiency (HHV) %	51.5	45.7	47.2	
COE (\$/MWh) excluding CO2 T&S	57.6	83.3	76.5	
COE (\$/MWh) including CO2 T&S		87.3	78.4	

 Analysis underway for sCO₂ direct-fired plant with natural gas feed

NATIONAL

Technical Challenges for SCO2 Power Cycles

For fossil energy applications – Recompression Brayton cycles

- Need to demonstrate cycle efficiencies greater than 50%
 - Expanders \geq 92 %
 - Compressors ≥ 85
- Material performance and cost
- Balanced recuperator performance
 - effectives, pressure drop, approach temperature and cost
- Primary heat soruce and cycle integration
 - Low temperature heat addition
 - Energy flux
 - Pressure drop

Recompression Closed Brayton Cycle

~ 2/3 of the heat in the cycle is recuperated

Pressure vs. Specific Enthalpy Diagram

Material Limits

Source: EPRI, Project FE0025064 "Materials for Advanced Ultra-supercritical Steam Turbines - Advanced Ultra-supercritical Component Demonstration" NETL 2017 Crosscutting Research 18 Project Review Meeting, March 23, 2017, Pittsburgh, PA.

Materials – Summary

R&D suggests that there is a pathway to acceptable material life

- Ferritic and austenitic steels perform well at or below $400^{\circ}C$
- Higher alloyed Fe- and Ni-based steels perform well up 600°C
- Ni-based alloys most promising for > 700°C
- Future work
 - Longer term testing for corrosion
 - Additional evaluation of O_2 and H_2O effects
 - Additional mechanical testing (creep and fatigue) in sCO_2 environment
 - Evaluate materials specifically for recuperator applications (creep, fatigue, corrosion, bonding)
 - Higher temperature (\geq 800°C) testing for direct-fired cycles

sCO₂ Power Cycle Technology Program

FY2017 FE Project Portfolio – Performers and FE Program Funding Sources

ADVANCED COMBUSTION SYSTEMS

Recuperators

Brayton Energy Altex Technologies Oregon State University Thar Energy

Systems Integration & Optimization

Southwest Research Institute Electric Power Research Institute

Materials

ADVANCED TURBINES

Turbomachinery

General Electric Company

Advanced Concepts for Direct-Fired Cycles

Southwest Research Institute NETL-RIC University of Central Florida (UTSR Award) Georgia Tech (UTSR Award)

Materials Oak Ridge National Laboratory

STEP

Thar Energy (advanced recuperator) Gas Technology Institute (10 MW sCO₂ pilot plant)

CROSSCUTTING TECHNOLOGY RESEARCH

Materials Oak Ridge National Laboratory Electric Power Research Institute

Supercritical Carbon Dioxide 10 MWe Pilot Plant Test Facility

Gas Technology Institute

Objectives

- Plan, design, build, and operate a 10 MWe sCO₂ Pilot Plant Test Facility
- Demonstrate the operability of the sCO₂ power cycle
- Verify performance of components (turbomachinery, recuperators, compressors, etc.)
- Evaluate system and component performance capabilities
 - Steady state, transient, load following, limited endurance operation
- Demonstrate potential for producing a lower COE and thermodynamic efficiency greater than 50%

GAS TECHNOLOGY INSTITUTE

FE0028979 Partners: SwRI, GE Global Research 10/1/2016 – 9/30/2022				
BUDGET				
DOE Participant		Total		
\$79,999,226	\$113,278,634			

Baseline 700°C 10 MWe RCB Cycle Diagram

NETL Basis for Cost Estimate of STEP Facility (similar to what will be built)

NATIONAL

TECHNOLOGY LABORATORY

ENERGY

Summary and Conclusions

Overview of Supercritical Carbon Dioxide Based Power Cycles for Stationary Power Generation

- Power cycles based on sCO₂ offer benefits to stationary power production
 - RCB cycle for CSP, nuclear on fossil energy heat sources
 - Allam cycle offers benefits to gaseous carbon based fuels with CO_2 capture
- DOE's sCO₂ CCI and the Offices of FE, NE and EERE have invested significantly to develop sCO₂ power cycle technology
- Projects are resolving technical issues (public and private investment)
- Technical issues remain
 - Materials
 - Heat source power cycle integration
 - Component development, optimization and demonstration (turbines, compressors and recuperators)
 - Cycle performance and cost

Supercritical CO₂ Power Cycle Conditions

 $1\% O_{2}$

 SO_2

HCI

FE conditions for the recompression Brayton Cycle (indirect) and Allam Cycle (direct)

