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• Introduction to NETL
• DOE’s Program on sCO2 Based Power Cycles
• Overview of  sCO2 Cycles of  interested to FE
• FE System Studies with sCO2 Power Cycles

• Cost and performance
• Technology Challenges
• Key Projects
• Summary and Conclusions

Presentation Outline
Overview of Supercritical Carbon Dioxide Based Power 
Cycles for Stationary Power Generation

Indirectly-heated cycle 

Directly-heated cycle 



3

NETL Core Competencies & Mission
MISSION - Discover, integrate, and mature technology solutions to enhance the nation’s 
energy foundation and protect the environment for future generations
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Systems

• Air, Water & Geology

• Understanding & 
Mitigation
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• Component & Device

• Design & Validation

• Process Systems
• Optimization
• Validation & Uncertainty
• Economics
• Energy Market Modeling
• Grid
• Life Cycle Analysis

Computational
Science & 

Engineering
• High Performance 

Computing

• Data Analytics

Program Execution 
& Integration

• Technical Project
Management

• Market & Regulatory 
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Systems Engineering 
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Directly-heated cycle (Allam cycle)
• Fuel flexible: coal syngas and natural gas
• Incumbent to beat: Adv. F- or H-class NGCC 

w/ post CCS
• Compatible w/ RD&D from indirect cycle
• >95+ % CO2 capture at storage pressure
• Net water producer, if  dry-cooled

FE Base Program in sCO2 Power Cycles 
Two related cycles for advanced combustion and gasification applications

Indirectly-heated cycle (RCB cycle)
• Cycle to be used for 10 MW sCO2 pilot plant
• Applicable to advanced combustion boilers 
• Incumbent to beat: USC/AUSC boilers 
• >50% cycle eff. (work out/heat in) possible
• High fluid density, low pressure ratio yields 

compact turbomachinery
• Ideally suited to constant temp heat sources 

(NE and CSP)
• Adaptable for dry cooling
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• FE Base sCO2 Technology Program
• sCO2 cycle component development funded by individual 

programs
• Specific interest in adv. combustion indirect cycle & IGCC 

direct cycle
• Near term application to natural gas

• DOE sCO2 Crosscut Initiative 
⁻ Collaboration between DOE Offices (FE, NE, and EERE)
⁻ Mission: Address technical issues, reduce risks, and mature 

technology
⁻ Objective/Goal: Design, build, and test 10 MWe 

Supercritical Transformational Electric Power (STEP) pilot 
facility 

⁻ FE designated budget focal for Crosscut Initiative and STEP

FE Programs Supporting sCO2 Technology
AES (AT & ACS), Crosscutting Technology Research and STEP

ADVANCED ENERGY SYSTEMS

CROSSCUTTING 
TECHNOLOGY 
RESEARCH

Advanced 
Turbines

Advanced 
Combustion 
Systems

• Turbomachinery for indirectly 
(STEP) & directly fired cycles

• Oxy-fuel combustion & 
turbomachinery integration

• Recuperators
• Heat source integration 

(indirect)
• Cycle integration

• Materials research
• Advanced manufacturing

10 MWe 
Indirect-
Fired
Test Facility

Supercritical 
CO2 Technology 
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• Moderate conditions for supercritical state 
• CO2 Critical Point 

• Temperature: 31.06 C , (87.9 ºF)
• Pressure: 7.4 MPa , (1071.8 psia)

• Approximately 50% increase in specific heat (Cp) 
around critical point at likely cycle conditions

• Excellent fluid properties 
• Liquid-like densities around the cycle

• Relatively low critical point temperature
• Increased density and heat capacity, and reduced 

compressibility factor near critical point 
• Non-Toxic

Why supercritical CO2 (sCO2)? 
sCO2 is an ideal fluid for the applications of interest – replacing steam
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• LP Cryogenic ASU 
• 99.5% O2
• 3.1% excess O2 to CFB

• Atmospheric oxy-CFB 
• Bituminous coal 
• 99% carbon conversion
• In-bed sulfur capture (94%), 140% excess CaCO3
• Infiltration air 2% of  air to ASU MAC

• Operating conditions for Rankine plants
• Supercritical (SC) Rankine cycle 

(Case B22F:  24.2 MPa/ 600 °C/ 600 °C)
• Advanced ultra-supercritical (AUSC) Rankine cycle

(Case B24F: 24.2 MPa/ 760 °C / 760 °C)
• No low temperature flue gas heat recovery
• 45% flue gas recycle to CFB
• CO2 purification unit

• ~100% CO2 purity
• 96% carbon recovery

Oxy-CFB Coal-fired Rankine Cycle Power Plant
Steam Rankine Comparison Cases 
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• LP Cryogenic ASU 
• 99.5% O2
• 3.1% excess O2 to CFB

• Atmospheric oxy-CFB 
• Bituminous coal 
• 99% carbon conversion
• In-bed sulfur capture (94%), 140% excess CaCO3
• Infiltration air 2% of  air to ASU MAC

• Recompression sCO2 Brayton cycle
• Turbine inlet temperature 620 °C and
• Turbine inlet temperature 760 °C

• Low temperature flue gas heat recovery in sCO2 power 
cycle

• 45% flue gas recycle to CFB
• CO2 purification unit

• ~100% CO2 purity
• 96% carbon recovery

Oxy-CFB Coal-fired Indirect sCO2 Power Plant
Baseline sCO2 process 
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• Baseline configuration

• Reheat sCO2 turbine

• Intercooled 2-stage main sCO2
compressor

• Reheat sCO2 turbine and 
Intercooled main sCO2
compressor

Oxy-CFB Coal-fired Indirect sCO2 Power Plant
sCO2 cycle configurations analyzed
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• Relative to the steam Rankine cycles:
• At 620 °C, sCO2 cycles are 1.1 – 3.2 

percentage points higher in efficiency
• At 760 °C, sCO2 cycles are 2.6 – 4.3 

percentage points higher
• The addition of  reheat improves sCO2

cycle efficiency by 1.3 – 1.5 percentage 
points

• The addition of  main compressor 
intercooling improves efficiency by 0.4 
– 0.6 percentage points

• Main compressor intercooling reduces 
compressor power requirements for both the 
main and bypass compressors

Summary of Overall Plant HHV Efficiencies
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Rankine Base IC Reheat Reheat+IC
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Power Summary (MW) B22F Base IC Reheat Reheat+IC
Coal Thermal Input 1,635 1,586 1,557 1,519 1,494
sCO2 Turbine Power 721 1,006 933 980 913
CO2 Main Compressor 160 154 148 142
CO2 Bypass Compressor 124 60 117 58
Net sCO2 Cycle Power 721 711 708 704 702
Air Separation Unit 85 83 81 79 78
Carbon Purification Unit 60 56 55 54 53
Total Auxiliaries, MWe 171 161 158 154 152
Net Power, MWe 550 550 550 550 550

Source: NETL
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• Note that there is significant uncertainty
in the CFB and sCO2 component capital 
costs (-15% to +50%)

• Large capital cost uncertainties being addressed
in projects funded by NETL, EPRI and OEM(s):

• sCO2 turbine (GE, Doosan, Siemens)
• Recuperators (Thar Energy, Brayton Energy, Altex)
• Primary heat exchanger (B&W, GE)

• sCO2 cases have comparable COE to 
steam Rankine plant at 620 °C, and lower
COE for 760 °C cases

• Main compressor intercooling improves COE 2.2 – 3.5 $/MWh
• Low cost means of  reducing sCO2 cycle mass flow

• Reheat reduces the COE for the 620 °C cases, but increases COE for turbine inlet 
temperatures of  760 °C

• Due to the high cost of  materials for the reheat portions of  the cycle in 760 °C cases 

Summary of COE 
Steam Rankine vs. sCO2 Cases
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w/o transportation and storage (T&S) costs
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• Reference:  Supercritical Oxy-
combustion CFB with Auto-
refrigerated CPU (Case B22F)

• $0/tonne CO2 Revenue
• 550 MWe

• COE reductions are relative to 
an air fired, supercritical PC 
coal plant with CCS (B12B)

• Higher efficiency and lower 
COE for sCO2 cycles relative to 
steam

• Large uncertainty in commercial 
scale sCO2 component costs

• Further improvements to the 
sCO2 cycle are currently under 
investigation

Comparison of sCO2 versus Rankine Cases
COE vs. Process Efficiency Analysis, with CCS
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sCO2 and IGCC Performance Comparison
All cases use same coal and gasifier, w/CCS

• sCO2 plants achieve greater efficiency 
due to cycle efficiency differences 

• Generate 13-22% more net power on 6% 
percent less coal, but ~2.5x more oxygen needed

• Case 2 has 2.9 percentage point higher 
efficiency compared to Baseline sCO2
plant

• Generates 8% more net power using the same 
coal feed and 3% more aux power

• All plants require about 26% of  gross 
power output for auxiliaries 

• sCO2 plants capture more carbon
• IGCC capture limited by water-gas shift reaction 

and Selexol process
• Case 2 eliminates syngas fuel in coal dryer

Parameter IGCC [5] sCO2
Baseline

sCO2
Case 2

Coal flow rate (kg/hr) 211,040 198,059 198,059
Oxygen flow rate (kg/hr) 160,514 391,227 394,234
sCO2 flow rate (kg/hr) --- 7,243,859 7,734,832
Carbon capture fraction (%) 90.1 97.6 99.4
Captured CO2 purity (mol% CO2) 99.99 99.80 99.80
Net plant efficiency (HHV %) 31.2 37.7 40.6
sCO2 power cycle efficiency (%) --- 61.7 61.9
F-frame gas turb. efficiency (HHV %) 35.9 --- ---
Steam power cycle efficiency (%) 39.0 --- ---
Raw water withdrawal (m3/s) 0.355 0.340 0.337
Power summary (MW)
Coal thermal input (HHV) 1,591 1,493 1,493
Steam turbine power output 209 0 0
Gas turbine power output 464 0 0
sCO2 turbine power output 0 777 828
Gross power output 673 777 828
Total auxiliary power load 177 215 222
Net power output 497 562 606

Source: Weiland, Nand White, C., “Techno-economic Analysis of an Integrated Gasification 
Direct-Fired Supercritical CO2 Power Cycle,” 8th International Conference on Clean Coal 
Technologies, May 8-12, 2017.
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Gasification Based Direct SCO2 Power Cycle
Preliminary Performance Comparison

Source: Weiland, N., Shelton, W., and White, C., “Performance of an Integrated Gasification 
Direct-Fired Supercritical CO2 Power Cycle,” First Workshop on High Efficiency, Low Emissions 
Coal-Fired Plant (HELE2016), Tokyo, Japan, May 23, 2016.

• sCO2 plant achieves greater efficiency, 37.7% 
vs. 31.2%, due to cycle efficiency differences 

• Generates 13% more net power 
• Requires 6% percent less coal

• sCO2 plant achieves greater carbon capture 
fraction 

• IGCC capture limited by water-gas shift reaction 
and Selexol process

• Similar results obtained in 2014 EPRI study2

• sCO2 net HHV plant efficiency of  39.6% with 
99.2% CO2 capture at 98.1% purity

2 Electric Power Research Institute (EPRI). (2014, December). Performance and Economic Evaluation of Supercritical CO2 Power Cycle 
Coal Gasification Plant (3002003734). Palo Alto, California.
5 National Energy Technology Laboratory (NETL). (2015, July 31). Cost and Performance Baseline for Fossil Energy Plants, Volume 1b: 
Bituminous Coal (IGCC) to Electricity, Revision 2b – Year Dollar Update. DOE/NETL-2015/1727, Pittsburgh, Pennsylvania.

Parameter IGCC5 sCO2 Cycle
Coal flow rate (kg/hr) 211,040 198,059
Oxygen flow rate (kg/hr) 160,514 391,227
sCO2 flow rate (kg/hr) --- 7,243,859
Carbon capture fraction (%) 90.1 97.6
Captured CO2 purity (mol% CO2) 99.99 99.80
Net plant efficiency (HHV %) 31.2 37.7
sCO2 power cycle efficiency (%) --- 55.4
F-frame gas turbine efficiency (HHV %) 35.9 ---
Steam power cycle efficiency (%) 39.0 ---
Raw water withdrawal (m3/s) 0.355 0.340
Carbon conversion (%) 99.5 99.5
Power summary (MW)
Coal thermal input (HHV) 1,591 1,493
Steam turbine power output 209 0
Gas turbine power output 464 0
sCO2 turbine power output 0 777
Gross power output 673 777
Total auxiliary power load 177 215
Net power output 497 562

Parameter IGCC sCO2
Cycle

EPRI sCO2
Cycle2

Net power output (MWe) 497 562 583
Net plant efficiency (HHV %) 31.2 37.7 39.6
COE (w/o T&S) (2011$/MWh) 152.6 136.4 127.7
Carbon capture fraction (%) 90 98 99
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NGCC with Post Combustion CO2 Capture
Incumbent to Beat for Direct NG fueled sCO2 Power Cycles

1 National Energy Technology Laboratory (NETL). (2015, July 6). Cost and Performance Baseline for Fossil Energy Plants, Volume 1a: Bituminous 
Coal (PC) and Natural Gas to Electricity, Revision 3. DOE/NETL-2015/1723, Pittsburgh, Pennsylvania

NGCC Baseline Cases

F-Class Turbine H-Frame Turbine

Case B31A1 B31B1 2b2

Net power output (MWe) 630 559 721

Carbon capture % 0 90 Yes

Steam cycle 2400 psig/1050°F/ 
1050°F

2400 psig/1075°F/ 
1075°F

Net Plant Efficiency (HHV) % 51.5 45.7 47.2

COE ($/MWh) excluding CO2 T&S 57.6 83.3 76.5

COE ($/MWh) including CO2 T&S 87.3 78.4

• Analysis underway for sCO2 direct-fired plant 
with natural gas feed

2 National Energy Technology Laboratory (NETL). (2012, June 25). Post Combustion Carbon Capture Approaches for Natural Gas Combined 
Cycle (NGCC) Power Plants. DOE/NETL-341/061812.  Pittsburgh, Pennsylvania



16

Technical Challenges for SCO2 Power Cycles
For fossil energy applications – Recompression Brayton cycles

• Need to demonstrate cycle efficiencies greater than 50%
• Expanders ≥ 92 %
• Compressors ≥ 85

• Material performance and cost
• Balanced recuperator performance 

• effectives, pressure drop, approach temperature and cost

• Primary heat soruce and cycle integration
• Low temperature heat addition
• Energy flux
• Pressure drop
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Recompression Closed Brayton Cycle
~ 2/3 of the heat in the cycle is recuperated
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Material Limits
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• Ferritic and austenitic steels perform well at or below 400°C
• Higher alloyed Fe- and Ni-based steels perform well up 600°C
• Ni-based alloys most promising for > 700°C
• Future work

• Longer term testing for corrosion
• Additional evaluation of  O2 and H2O effects
• Additional mechanical testing (creep and fatigue) in sCO2 environment
• Evaluate materials specifically for recuperator applications (creep, fatigue, corrosion, bonding)
• Higher temperature (≥800°C) testing for direct-fired cycles

Materials – Summary
R&D suggests that there is a pathway to acceptable material life
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STEP
Thar Energy (advanced recuperator)
Gas Technology Institute (10 MW sCO2 pilot plant)

CROSSCUTTING TECHNOLOGY RESEARCH
Materials
Oak Ridge National Laboratory 
Electric Power Research Institute

ADVANCED TURBINES
Turbomachinery
General Electric Company 

Advanced Concepts for Direct-Fired 
Cycles
Southwest Research Institute
NETL-RIC
University of Central Florida (UTSR Award)
Georgia Tech (UTSR Award)

Materials
Oak Ridge National Laboratory

ADVANCED COMBUSTION SYSTEMS
Recuperators
Brayton Energy 
Altex Technologies
Oregon State University
Thar Energy

Systems Integration & Optimization
Southwest Research Institute
Electric Power Research Institute

Materials
NETL - RIC

sCO2 Power Cycle Technology Program
FY2017 FE Project Portfolio – Performers and FE Program Funding Sources
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Objectives
• Plan, design, build, and operate 

a 10 MWe sCO2 Pilot Plant Test Facility
• Demonstrate the operability of  the 

sCO2 power cycle
• Verify performance of  components 

(turbomachinery, recuperators, 
compressors, etc.)

• Evaluate system and component 
performance capabilities
• Steady state, transient, load following, 

limited endurance operation
• Demonstrate potential for producing a lower 

COE and thermodynamic efficiency greater 
than 50%

Supercritical Carbon Dioxide 10 MWe Pilot Plant Test Facility
Gas Technology Institute

GAS TECHNOLOGY INSTITUTE
FE0028979

Partners: SwRI, GE Global Research
10/1/2016 – 9/30/2022

BUDGET

DOE Participant Total

$79,999,226 $33,279,408 $113,278,634
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Baseline 700°C 10 MWe RCB Cycle Diagram
NETL Basis for Cost Estimate of STEP Facility (similar to what will be built)

Source: “10 MW sCO2 Pilot Plant Techno-economic Analysis – Variations”, NETL June 26, 2015
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• Power cycles based on sCO2 offer benefits to stationary power production
• RCB cycle for CSP, nuclear on fossil energy heat sources
• Allam cycle offers benefits to gaseous carbon based fuels with CO2 capture

• DOE’s sCO2 CCI and the Offices of  FE, NE and EERE have invested 
significantly to develop sCO2 power cycle technology

• Projects are resolving technical issues (public and private investment)
• Technical issues remain

• Materials
• Heat source power cycle integration
• Component development, optimization and demonstration (turbines, compressors and 

recuperators)
• Cycle performance and cost

Summary and Conclusions
Overview of Supercritical Carbon Dioxide Based Power Cycles 
for Stationary Power Generation
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Supercritical CO2 Power Cycle Conditions
FE conditions for the recompression Brayton Cycle (indirect) and Allam Cycle (direct)

Essentially pure CO2

Working Fluid in the Cycle

CO2 with combustion products
including O2, H2O, SO2, HCl

Example
95% CO2
4% H2O
1% O2

SO2
HCl

T (°C) P (MPa) T (°C) P (MPa)
Heater 450-535 1-10 650-750 1-10

Turbine 650-750 20-30 550-650 8-10

HX 550-650 8-10 100-200 8-10

Combustor 750 20-30 1150 20-30

Turbine 1150 20-30 800 3-8

HX 800 3-8 100 3-8

Cycle/Component Inlet Outlet

In
di

re
ct

Di
re

ct
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