System Perspectives on Long Duration Storage ARPA-E

EVOLVED ENERGY RESEARCH

Ryan Jones 2017-12-07

- Long-term context for long duration storage
- Example from NY
 - Roles for storage and the durations needed for each \bullet
- Final thoughts and observations

RESEARCH

About Evolved Energy Research

- Energy consulting firm focused on addressing key energy sector challenges posed by climate change
- Lead developers of EnergyPATHWAYS, a bottom-up energy system model used to explore the near-term implications of long-term deep decarbonization
- We advise clients on issues of policy implementation and target-setting, R&D strategy, technology competitiveness and impact investing

- Plausible future energy infrastructures which deeply reduce energy-related CO₂ emissions
- Provides a plan or blueprint to achieve the deep decarbonization of the energy system

U.S. Energy-related CO₂ Emissions

Source: historical emissions data from EIA Monthly Energy Review.

page

ENERGY

RESEARCH

Three pillars of deep decarbonization

United States

2050 U.S. Benchmarks

- 2x increase in the share of energy from electricity or electrically derived fuels
- ~99% decrease in the emissions intensity of electricity generation
- 3x drop in energy use per unit GDP

Three pillars cont.

China, India and United Kingdom

Literyy	eniciency	
2010		16.83
2050	4.61	- 73%

Electricity emissions intensity, gCO₂/kWh

Electrification of end-uses

Share of electricity in total final energy, %

Fnerav	efficiency	
Lileryy	eniciency	

Energy intensity of GDP, MJ/\$

Enorgy officionay

Decarbonization of electricity

Electrification of end-uses 14% + 13 pt

2050 27%

Share of electricity in total final energy, %

19%

Share of electricity in total final energy, %

page 6

Electrification of end-uses

Energy	/ efficiency	
2010		2.87
2050	0.91	- 68%

Energy intensity of GDP, MJ/\$

Decarbonization of electricity

Electricity emissions intensity, gCO2/kWh

Source: figures from Deep Decarbonization Pathways Project country reports (2015)

2010

2050

40%

Rapid growth of renewables

At the end of 2017 renewables are the cheapest source of new energy for most of the world-this is a fundamental shift

Historical Build (EIA)

High Renewables DDPP Scenario new capacity by year

Unprecedented growth in capacity due to:

- Load is nearly doubling between 2015 & 2050 because of electrification in buildings, transport, & industry
- Reaching 80% carbon reductions by 2050 necessitate a 50x reduction in electricity emissions intensity
- Low renewable capacity factors (3-4x capacity is needed per unit energy)

page

Nuclear relicensing

ENERGY

RESEARCH

How do renewables present unique challenges for balancing?

- Renewables have certain characteristics that make them difficult to manage in the context of today's electricity system
 - Variability output is not controllable and can change rapidly
 - Uncertainty future output can be difficult to predict
 - New locations deployment in locations not anticipated when the grid was built
 - Inverters vs. synchronous motors technical character of inverters are different

Categorizing how high renewables impact

Time-Scale of Balancing Challenges (seconds)

Categorizing how high renewables impact

Time-Scale of Balancing Challenges (seconds)

Categorizing how high renewables impact

Time-Scale of Balancing Challenges (seconds)

Long Duration Storage Example in NY State

New York: Annual Energy Outlook Reference Scenario

Month-Hour Generation and Load, 2050

page 13

EVOLVED ENERGY

RESEARCH

6

New York: Deep Decarbonization Pathway – high renewables

Month-Hour Generation and Load, 2050

EVOLVED ENERGY RESEARCH

page 14

LDS function 1: deliver renewable generation to load at high penetrations

New York State example: 2011 weather with in-state renewables & high electrification

Percent of Renewables Curtailed Without Storage or Flexible Load

- After 30% renewables (in this NY example), curtailment increase rapidly
- At a 50% RPS and equal amounts of wind and solar, marginal curtailment of solar is 56% and wind 21%

	130%	49%	45%	44%	45%	45%	47%	49%	53%	58%	64%	70%
	120%	46%	42%	41%	41%	42%	44%	46%	50%	55%	62%	68%
8	110%	43%	39%	37%	37%	38%	40%	43%	47%	53%	59%	65%
()	100%	39%	35%	32%	32%	33%	36%	39%	44%	50%	56%	62%
ð	90%	35%	30%	27%	27%	28%	31%	35%	40%	46%	52%	59%
\mathbf{C}	80%	30%	26%	22%	21%	23%	26%	31%	36%	42%	48%	55%
	70%	24%	20%	17%	16%	17%	21%	25%	31%	37%	43%	50%
	60%	18%	14%	11%	10%	11%	15%	19%	25%	31%	37%	43%
Policy	► 50%	11%	9%	7%	6%	6%	9%	13%	18%	23%	29%	35%
Target	40%	6%	4%	3%	2%	2%	3%	6%	10%	15%	20%	25%
	30%	2%	1%	1%	0%	0%	1%	1%	3%	5%	9%	13%
	20%	0%	0%	0%	0%	0%	0%	0%	0%	0%	1%	2%
	10%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
Solar Fra	ction	0%	10%	20%	30%	40%	50%	60%	70%	80%	90%	100%
Wind Fra	action	100%	90%	80%	70%	60%	50%	40%	30%	20%	10%	0%

Renewable delivery respects a must run requirement of nukes, co-gen, and hydro (16% by energy)

What duration storage is needed to avoid curtailment?

New York State: 2011 weather with in-state renewables & high electrification 70% wind, 30% solar

ENERGY

RESEARCH

LDS function 2: provide capacity to avoid capital investment (T, D & G)

New York State example: 2011 weather with in-state renewables & high electrification

 In a highly electrified, winter peaking system, instate renewables provide little native capacity value for the NY system – very large residual capacity needs exist.

Percent System Peak Reduction From Renewables

	130%	15%	24%	23%	22%	21%	20%	18%	17%	16%	14%	11%
(\circ)	120%	15%	23%	22%	21%	20%	19%	18%	17%	15%	14%	11%
8	110%	14%	23%	22%	21%	20%	19%	18%	16%	15%	14%	11%
()	100%	14%	22%	21%	20%	19%	18%	17%	16%	15%	14%	11%
Ď	90%	13%	21%	20%	19%	19%	18%	17%	16%	15%	14%	11%
\mathbf{C}	80%	12%	20%	20%	19%	18%	17%	16%	15%	14%	14%	11%
	70%	12%	19%	19%	18%	17%	17%	16%	15%	14%	13%	11%
	60%	11%	19%	18%	17%	17%	16%	15%	15%	14%	13%	11%
Policy	► 50%	11%	18%	17%	17%	16%	15%	15%	14%	14%	13%	11%
Target	40%	10%	17%	16%	16%	15%	15%	14%	14%	14%	13%	11%
	30%	9%	15%	15%	15%	15%	14%	14%	14%	13%	13%	11%
	20%	6%	10%	14%	14%	14%	14%	14%	13%	13%	13%	11%
	10%	3%	5%	7%	9%	12%	13%	13%	13%	13%	12%	11%
	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
Solar Frac	ction	0%	10%	20%	30%	40%	50%	60%	70%	80%	90%	100%
Wind Fraction		100%	90%	80%	70%	60%	50%	40%	30%	20%	10%	0%

Renewable delivery respects a must run requirement of nukes, co-gen, and hydro (16% by energy)

What duration storage is needed to reduce system peak?

New York State: 2011 weather with in-state renewables & high electrification 70% wind, 30% solar

Final thoughts and observations

- Fundamentally, storage resources should be located at the geographic scale where the issues occur
 - "Firming" renewable generation on site has no inherent value wires provide essential diversity services for loads and generation at no cost. Could be a near-term bridge due to market rules.
- Long-duration balancing solutions can solve short duration challenges but not vice versa
 - It is therefore beneficial to keep the long-term perspective in mind when focused on R&D and system planning
- Bulk system load/gen imbalance is only part of the picture, as storage opportunities increase with transmission constraints
 - Wires are cheaper, but they are often difficult or impossible to build

page <u>19</u>

THANK YOU

() 2443 Fillmore Street, No. 380-5034 San Francisco, CA, 94115

(844) 566-1366

info@evolved.energy

(
www.evolved.energy

EVOLVED ENERGY RESEARCH

Seasonal energy imbalance

 Increasing the penetration of wind & solar beyond ~75% in temperate climates results in seasonal energy imbalances that become the dominate challenge for achieving deep decarbonization in electricity

U.S. Eastern Interconnect 2015 Load with simulated 40% Solar & 60% Onshore Wind by Energy

www.evolved.energy

