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Big Picture

Source:
https://i.pinimg.com/originals/5a/a4/83/5aa4836d523f93dd5ce5f55b64a29649.jpg

• Optimizing design, 
operation and control 
of engineering 
systems, e.g. CCS, may 
require considerations 
of:

– multiple subsystems 
(disciplines)

– multiple objectives and 
constraints

– uncertainty
– computationally 

expensive simulations
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Terminology:
Multi-Objective Optimization

f1 (e.g. emission)

f2
(e.g. cost) feasible domain

Pareto 
solutions

Pareto (1896)

Minimize

Minimize

• f1,…, fM: objectives such as 
cost, emission intensity, NPV
• x: decision variables such as 
size, pressure, flow rate; 
changed during optimization

• p: parameters such as   
material, temperature, fixed
during optimization
• gj: constraint such as limit on 
emission, stress, budget
[There might be equality constraints as 
well!]
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Terminology:
Multi-Disciplinary Optimization (MDO)
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Hu et al. 2013, “New Approximation Assisted Multi-objective collaborative Robust Optimization Under Interval Uncertainty,” 
Structural and Multidisciplinary Optimization, 47(1)

Li and Azarm 2008, “Multiobjective collaborative Robust Optimization (McRO) with Interval Uncertainty and Interdisciplinary 
Uncertainty Propagation,” Journal of Mechanical Design (ASME Trans), 130(8)
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Multi-Objective Robust/Flexible Optimization 
(MORO/MOFO):

What is the Problem?
• Robust Optimization:

Optimize design xd and 
operational variables xop for 
all realizations of 
uncertainty

• Flexible Optimization:
Optimize design xd for all 
realizations of uncertainty 
while using operational 
variables xop to mitigate or 
eliminate effects of 
uncertainty

Li et al. 2006, “A New Deterministic Approach using Sensitivity Region Measures for Multi-Objective and Feasibility Robust Design 
Optimization,” Journal of Mechanical Design (ASME Trans), 128(4) 
Azarm and Lee, 2016, “Multi-objective Robust Design Optimization with Operational Flexibility under Interval Uncertainty,” ASME IDETC
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Known range of uncertainty
maps into 

objective space
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Non-robust
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Known range of uncertainty 
maps into 

constraint space

MORO/MOFO:
Approach (Basic Idea)
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MORO/MOFO:
Centrifugal Impeller Example
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Multi-Objective Sensitivity Analysis (MOSA)
What is the Problem?

• Determine key parameters for uncertainty reduction!

Objective: Optimally determine, with minimum investment (cost), the 
amount of uncertainty reduction needed in input parameters that results 
in minimum transmitted uncertainty in system outputs (or performance)

Li et al. 2009, “Interval Uncertainty Reduction and Sensitivity Analysis with Multi-Objective Design Optimization,” Journal of 
Mechanical Design (ASME Trans), 131

Li et al. 2010, “Optimal Uncertainty Reduction for Multi-Disciplinary Multi-Output Systems Using Sensitivity Analysis,” Structural 
and Multidisciplinary Optimization, 40

Subsystem 2
(SS2)

Subsystem 1
(SS1)
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MOSA/MiMOSA
Approach (Basic Idea)

• minimize investment in uncertainty reduction 
of inputs, while also

• minimize uncertainty in outputs

Investment
metric

Rf

α = 0

α = 1

RTR

Tolerance Region

p0

p1

p2
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Mehr and Azarm, 2005, “Bayesian Meta-Modeling of Engineering Design Simulations: A Sequential Approach with Adaptation to 
Irregularities in the Response Behavior,” International Journal for Numerical Methods in Engineering, 62

Abdelaziz et al. 2010, “Approximation Assisted Optimization for Novel Compact Heat Exchanger Designs,” HVAC&R Research, 16(5)

Approximation Assisted Optimization (AAO)
What is the Problem?

Multi-objective 
optimizer

1. DOE

2. Meta
(surrogate) 
modeling

3. Validation
Objective: Optimization of a system that has computationally 
expensive simulation 

Heat Exchanger
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Parameterize 
Geometry

Optimization

Optimizer New Design
(Nt, Din, Hs, Vs, w, v)

Assemble HX 
(CoilDesigner)

Heat load, HX Volume, 
Material, Air & water 
pressure drop etc.

Optimized HX

Volume

A
ir 

D
P

Current Technology

New designs

Concept Heat 
Exchanger

Approximation

DOE

PPCFD

Air DP/HTC

* Parameterized Parallel CFD, Abdelaziz, 2007, Aute et al., 2008

AAO:
Approach
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Parameter Value

Inputs Din, Hs, Vs, w, v

Responses Air DP, HTC

DOE SFCVT, SO

Metamodel Kriging

Initial 100

New points 100 each

Verification 250

MAS ≥80, 0.1

Approximation:

AAO:
Heat Exchanger Example

Aute et al., 2008



18

Outline

Multi-
Objective

Multi-
Disciplinary 
Optimization

Design and 
Control 

Optimization



19

Co-Design: Design and Control Optimization (CoD)
What is the Problem?

• Connected systems 
may require design of 
both Plant and 
Control, or Co-Design 

• Objective: Develop 
decentralized 
methods for 
coordinated design of 
Plant (P) and Control 
(C) for connected 
engineering systems

Chanekar et al. 2018, “Co-design of Linear Systems using Generalized Benders Decomposition,” Automatica, 89

Liu et al. 2017, “On Decentralized Optimization for a Class of Multisubsystem Co-design Problems,” Journal of Mechanical Design 
(ASME Trans), 139(12)
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CoD:
Approach
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CoD:
Example



22

Final Remarks

• Optimization is a necessity for design, 
operation and control of engineering systems, 
including CCS systems, when we

– have multiple objectives, and constraints (with limits on 
resources, budget, etc.),

– want optimized solutions which are relatively “insensitive” to 
uncertainty

– want to explore tradeoffs between investment in uncertainty 
reduction of input parameters vs. reduction in 
system/subsystem output uncertainty

– have computationally expensive simulations while performing 
optimization
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