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Carbon capture and storage

* Optimizing design, AT A GLANCE

Only 10% Qf The Coz how lar underground the CO, & stored permanently
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CHEMICAL INDUSIRY

— multiple subsystems
(disciplines)
— multiple objectives and _ “ax—

constraints o
— uncertainty _—
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expensive simulations
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90% of the CO, Is stored
in the earih directly or by
injection for enhanced oll recovery
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DDSLSE@’E,%N Terminology: s -
fﬂgﬁﬁﬂw Multi-Objective Optimization S

* fi,..., f1;: Objectives such as
cost, emission intensity, NPV 7

e x: decision variables such as

size, pressure, flow rate;

changed during optimization

* p: parameters such as

material, temperature, fixed

during optimization

[ minimize/maximize fm (x,p) m=1,...M

subjectto g .(x, p)<0 j=1...,J
— \_ J
Lo feasible domain
(e.g. cost) /
Minimize

° g constraint such as limit on

emission, stress, budget

[There might be equality constraints as

welll]

Pareto (1896)
Pareto
solutions

Minimize «—— f; (e.g. emission)
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Li and Azarm 2008, “Multiobjective collaborative Robust Optimization (McRO) with Interval Uncertainty and Interdisciplinary
Uncertainty Propagation, ” Journal of Mechanical Design (ASME Trans), 130(8)

Hu et al. 2013, “New Approximation Assisted Multi-objective collaborative Robust Optimization Under Interval Uncertainty,”
Structural and Multidisciplinary Optimization, 47(1) 5
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OESIGH Multi-Objective Robust/Flexible Optimization
DDSL&Em (MORO/MOFOQ):
sy What is the Problem?
 Robust Optlmlzat|on: minimize f g< 0
Optimize design x, and fl
operational variables x,, for uncertainty

all realizations of

uncertainty A B 7 ":;.d
V\/D\

» Flexible Optimization:

Optimize design x, for all infeasible
. . . / g > ()

realizations of uncertainty i

while using operational td

variables x,, to mitigate or feasible

eliminate effects of g<0

uncertainty

Li et al. 2006, “A New Deterministic Approach using Sensitivity Region Measures for Multi-Objective and Feasibility Robust Design
Optimization,” Journal of Mechanical Design (ASME Trans), 128(4)

Azarm and Lee, 2016, “Multi-objective Robust Design Optimization with Operational Flexibility under Interval Uncertainty,” ASME IDE7T C
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Robust

56

P2

4 f2“

«—— Known range of uncertainty 7
maps into /
/

objective space

Non-robust

P >/

v

Feasibly non-robust

P2,
81 ‘—+
g
«—— Known range of uncertainty ‘+‘
maps into /
constraint space e
., Feasibly robust |
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- Upper Diffuser - =
O - =
Inlet Duc \Volute \ ImEeIIer Yf :w—— —i
z/—‘\ = " T T T ==

min

X1=Pxq2=P, Xop = Pexit

s.t.

VQ:

(a) Plan cut through blades

Povit Lower Diffuser o
{/[1 - _n(ﬂl’ﬂppewa)a
f2: _Pwlout(ﬂl’ﬂppexit’g)} |
gl = 1_ Apexit (ﬂl’ﬂZ ’ pexit’Q) / Apexit,nominal < O 5SRO0 |—
g2:1_77(1317182’pexit’Q)/77nominalSO %
(n
& =15, Bys Poirs D) —10 s |
84 = Hps (B Py P2 —0.6 <0 S .
85 = Hs (ﬂp ﬂz > Pexits Q) -0.6<0 W Deteministicipopu=60,gan=20) ’
255, $40, 40, <60 |9 e,
Apexil,nominal S Apexit < Apexit,nominal + 10
e | | i I i | i |
Qnominal -10 S Q S Qnomingl + 10 ) G.as O.a54 b.&645 .ol U.5498
Efficiency 9
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* Determine key parameters for uncertainty reduction!

.o

(MiMOSA)

" I!"- .-I

¢ . Multi-Disciplinary, Multi-Objective Sensitivity Analysis

_ _ System (SS0)

HOW mUCh pl i Apl :—> Subsystem 1 ,
reductio_n in input p, £ Ap, I )
uncertainty (Ap), ) 1 1

at both system : [
? Subsystem 2
and subsystems* p tAp : i

C raar T
J2 £,

To optimally
decrease output
uncertainty (Af)
at both system
and subsystems

| Sy T

Objective: Optimally determine, with minimum investment (cost), the
amount of uncertainty reduction needed in input parameters that results
in minimum transmitted uncertainty in system outputs (or performance)

Li et al. 2009, “Interval Uncertainty Reduction and Sensitivity Analysis with Multi-Objective Design Optimization,” Journal of

Mechanical Design (ASME Trans), 131

Li et al. 2010, “Optimal Uncertainty Reduction for Multi-Disciplinary Multi-Output Systems Using Sensitivity Analysis,” Structural

and Multidisciplinary Optimization, 40
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DD LSE?’?%N MOSA/MiIMOSA
fﬂgﬁﬁﬂw Approach (Basic Idea)

* minimize investment in uncertainty reduction
of inputs, while also

* minimize uncertainty in outputs
a=0

ey
TRv1L S

I / Tolerance Region
te K
- Objective Variation
min R, (a)
| a Investment
: Uncertainty metric
m;n I (a) Reduction Cost:

— Investment (I)




0 MiMOSA
iy Cordless Grinder Example
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CFD, FEM etc.
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Multi-objective
optimizer

Symmetry Planes

Heat Exchanger
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3. Vali
Objective: Optimization of a system that has computationally
expensive simulation

Mehr and Azarm, 2005, “Bayesian Meta-Modeling of Engineering Design Simulations: A Sequential Approach with Adaptation to
Irregularities in the Response Behavior,” International Journal for Numerical Methods in Engineering, 62
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Abdelaziz et al. 2010, “Approximation Assisted Optimization for Novel Compact Heat Exchanger Designs,” HVAC&R Research, 16(5)
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RyipLh
- ]

Parameterize
Geometry

N

f Optimized HX \

4 Approximation )

Air DP/HTC
] B)| | DOE i
? * o

/ Optimization \

New Design

Optimizer
p (Nt, Din’ HS’ VS} M}) V)
Current Technology
o A
. a |-
° New designs Assemble HX
° ’ . (CoilDesigner)

f Air DP

Volume j

Heat load, HX Volume,

Material, Air & water
\ pressure drop etc.

* Parameterized Parallel CFD, Abdelaziz, 2007, Aute et al., 2008 16




D D s sl AAO:
e Heat Exchanger Example

= | I —— | [ e
min ADP, V 70
HX 4 NGHX Designs
8.L. N B Baseline Microchannel Coil
0 =1kW 60
ADP < ADP,__ .
RDP < RDP,
HX =[Nt,D, ,Hs,Vs,w,v] 540
A
. =

Approximation: 5 30

Inputs D, Hs, Vs, w, v 20 x

Responses  Air DP, HTC

DOE SFCVT, SO 10 ‘e

.. — o o
Metamodel  Kriging
-~ 0 ®mae oo oo * oo

Initial 100 0 . . . . .

New points 100 each 200 300 400 500 600 700
Verification 250 HX Volume [cm’]

MAS 280, 0.1

Aute et al., 2008 17
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« Connected systems
may require design of

both Plant and
Control, or Co-Design

* Objective: Develop
decentralized
methods for
coordinated design of
Plant (P) and Control
(C) for connected
engineering systems

cccccccccccccccccccccccccc
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Al()’l:?slu,-) N

x1(t)
Bi(v1, ij_”r') ysl:f w (¢)
Subsystem 1
A (¥, y51,2) A13(J’3Jsl,3)

I P C |
I I
I |
: Zp h (yl.ysL j) X1(t) I
| Zc1 9 (}’1-}’sljj-) |
I \ 4 v v |
................. I.......................................................................................... I
I I
Subsystem2 f———-— Subsystem 3

Liu et al. 2017, “On Decentralized Optimization for a Class of Multisubsystem Co-design Problems,” Journal of Mechanical Design

(ASME Trans), 139(12)

Chanekar et al. 2018, “Co-design of Linear Systems using Generalized Benders Decomposition,” Automatica, 89
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[Sl} Initialize physical variables
IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII | ¢

For each control subsystem,
(SZ} *  Solve matrix Riccati equations
* [Initialize coordinator variables

|
|
I
| T
|
|
|
|

Control | (83) Find variables in each control subsystem ﬁ
Inner

Plant Plant Plant Update
U LDDP (54) w No coordinator
(P‘am) | l variables

Wy | [l -
al v g Compute gradients of Hamiltonian
________________________________________ Outer _ (53) w.r.t. physical variables
| | Loop )
: . ) : _[Sﬁ} Given dual variables, find optimal local and
| Overallinteraction error | Plant shared physical variables in each subsystem
[
: ! Inner — ot
| onsistency pdate
: 551 557 {0 : Loop _(87} constraint rgsidual dual |
| | small’ variables
| Control Control Control | |
| Update
CETC LU LO LU L OO L EOCE OO TP LT CECECELRCED [SS} physical —
(Contron - variables

Stop
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I —— |
u’l uZ u3 uN
1. .. “
; kl k2 k3 kN
Vi BRAOAG —~ AN — A L AAAA — A
5—‘1_ ml —E_ mz | — m3 L — [ —] mN
; €1 C2 C3 Cn
/
10000

9000 - —4— Decentralized
—e— Centralized

8000+

T000

6000~

Time(s)

5000+-

4000 —

3000+

2000+

1000+

DD - 1 20 30 4ID 5ID BID 70 80 a0 1 60

Number of Subsystems

21
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. Optlmlzation is a necessity for design,
operation and control of engineering systems,
including CCS systems, when we

— have multiple objectives, and constraints (with limits on
resources, budget, etc.),

— want optimized solutions which are relatively “insensitive” to
uncertainty

— want to explore tradeoffs between investment in uncertainty
reduction of input parameters vs. reduction in
system/subsystem output uncertainty

— have computationally expensive simulations while performing
optimization

22




	Slide Number 1
	Slide Number 2
	Big Picture
	Terminology:�Multi-Objective Optimization
	Terminology:�Multi-Disciplinary Optimization (MDO)
	Slide Number 6
	Multi-Objective Robust/Flexible Optimization (MORO/MOFO):�What is the Problem?
	MORO/MOFO:�Approach (Basic Idea)
	Slide Number 9
	Slide Number 10
	Multi-Objective Sensitivity Analysis (MOSA)�What is the Problem?
	MOSA/MiMOSA�Approach (Basic Idea)
	MiMOSA�Cordless Grinder Example
	Slide Number 14
	Approximation Assisted Optimization (AAO)�What is the Problem?
	AAO:�Approach
	AAO:�Heat Exchanger Example
	Slide Number 18
	Co-Design: Design and Control Optimization (CoD)�What is the Problem?
	CoD:�Approach
	CoD:�Example
	Final Remarks

