

New Generation of Fuel Cells: Fast, Furious and Flexible

Grigorii Soloveichik, Program Director

March 1, 2017

Increasing demand for electrification of transportation

- Economics: fewer oil imports, higher efficiency
- Emissions reduction, especially while idling
- More power for computing, entertainment, auxiliary power
- Lower noise, thermal signature
- More fun to drive...

Electrification increasingly benefits transportation

https://youtu.be/1qFV5i8tBhs

Pros and Cons of Current Options

Battery Electric Vehicle (BEV) 85 kWh battery ~265 mi.		Fuel Cell Vehicle (FCEV) 113 kW FC 1.6 kWh battery ~312 mi.		
Strengths	 High round trip efficiency High power Grid connected infrastructure Short range, fleet operations 	 High energy density – large driving range Fast charging time comparable to ICE Power and energy separated Long range, heavy duty 		
Weaknesses	 Limited range Recharging time Lithium battery safety Infrastructure (urban) Battery cost 	 Infrastructure Less mature technology Lower round trip efficiency Hydrogen safety Fuel cell cost 		
Overdesigned for energy		Overdesigned for power		

Solution: Hybridization with Direct Liquid Fuel Cells

Combination of a plug-in EV with fuel cell range extender could be the optimal solution

- Smaller battery provides power for acceleration at low cost
- Fuel cell stack provides energy for desirable driving range
- Liquid fuels allows for smaller tank sizes and using existing infrastructure

- Fast: short time for start-up/shut down
- **Critical Furious**: high power density
- needs
 - Flexible: capable to use a variety of sustainable liquid fuels

Fuels for Direct Liquid FCHEVs

Fuel	B.p., deg C	Energy density, kWh/L	Driving range (miles)*	
			Primary (16 gal)	Extender (8 gal)
Synthetic gasoline	69-200	9.7	682	307
Biodiesel	340-375	9.2	581	291
Methanol	64.7	4.67	554	249
Dimethyl ether (DME)	-24	5.36	632	284
Ethanol	78.4	6.30	750	338
Formic acid (88%)	100	2.10	272	123
Ammonia	-33.3	4.32	470	212
Hydrazine hydrate	114	3.40	418	188
Liquid hydrogen	-252.9	2.54	259	116
Compressed hydrogen (700 bar)	gas	1.55	158	71

* - Fuel cell efficiency 55%, battery round trip efficiency 90%, energy consumption 0.3 kWh/mile

Trailblazers

12 kW hydrazine hydrate fueled PGMfree AEMFC by Daihatsu Motor Co. www.electrical-cars.net

5kW ethanol fueled SOFC range extender (375+miles) by Nissan www.greencarcongress.com

3kW diesel fueled SOFC APU by Delphi www.7ms.com/fct/

Viking Lady 250 kW methanol fueled Convion SOFC APU www.lngworldshipping.com

3kW diesel fueled SOFC APU by AVL, Eberspächer, Topsoe Fuel Cell, Volvo and Forschungszentrum Jülich http://www.desta-project.eu/partners/

90kW liquid H2 FC APU for A320 aircraft by Airbus www.asdreports.com

Potential Requirements: Feedback Sought!

Component Requirements

- Power density comparable with hydrogen fuel cells
- Combining electrocatalysis and fuel reforming catalysis working below 550 C with no coking issues
- Non- or extremely low Pt catalysts adaptable to different liquid fuels
- No membrane crossover

System Requirements

- Power output > 3 kW/L
- Start up time less than 3 minutes
- 5,000 thermal cycles with degradation less 5%
- Internal fuel reforming
- Fuel flexibility

Potential Applications: Niche to Broader Markets

Quotes of the day

Adam Heller (a prominent electrochemist in interview to ECS, 2015) "Pretty soon—on a historical scale of 100 years—there's no question in my mind that we will drive liquid fuel-based fuel cell powered cars."

Let's make it in 10 years!

