

Capability in Theory, Modeling, and Validation for a Range of Innovative Fusion Concepts using High-Fidelity Moment-Kinetic Models

BETHE Kickoff Virtual Workshop Aug. 11–12, 2020

BHUVANA SRINIVASAN, Virginia Polytechnic Institute and State University (Virginia Tech) COLIN ADAMS, STEFANO BRIZZOLARA, Virginia Tech AMMAR HAKIM, Princeton Plasma Physics Laboratory

Team members and roles

High-level motivation and goals of the project

- Advanced computing to better understand and advance the performance of lower-cost fusion concepts
- Versatile set of computational plasma modeling capabilities for *kinetic and reduced models* to study *plasma equilibrium, stability, plasma-wall interactions* using the Gkeyll code
- Application of a *liquid metal multiphase modeling capability* to study liquid wall dynamics along with validation experiments

- Computational simulation partnership with the following concept teams:
 - Plasma-jet magneto-inertial fusion (Los Alamos National Laboratory)
 - Wisconsin High-Field Axisymmetric Magnetic Mirror (UW-Madison) and Centrifugal Mirror Fusion (UMBC)
 - General Fusion's Magnetized
 Target Fusion

Major tasks (and technical risks), milestones, and desired project outcomes

- Major tasks/milestones:
 - Mirrors: Provide guidance on moment and kinetic equilibria and stability (UW-Madison and UMBC)
 - **PJMIF**: Provide guidance on optimization of jet parameters for liner uniformity (LANL)
 - Plasma-surface interactions
 - Plasma-solid wall interactions: Verified and validated sheath studies with electron and ion emission, impact on wall, impact on plasma
 - Liquid-wall dynamics: Verified and validated multi-phase liquid metal modeling capability (General Fusion data) and liquid free-surface experiments (Virginia Tech)

- Key technical risks
 - Reduced moment models may not produce results to desired fidelity (Mitigation: use kinetic models with larger computational cost)
- Desired project outcomes
 - Verified and validated, moment, kinetic, and incompressible multiphase predictive capability
 - Provide understanding of critical physics necessary for fusion concept viability
 - Iterate with concept teams to understand parameter space of each concept

Key techno-economic metrics of the project

- Access to high-fidelity computation is critical to accelerate the development of lower-cost fusion concepts
- Public and private entities will benefit from the scientific contributions of this team while also benefiting through access and use of these computational capabilities
- Our open-source codes are regressiontested to produce *fully reproducible* results
- Provides an easy to use framework for fusion concept teams
- Our open-source, high-fidelity capabilities are accessible by the broader fusion community

