

Microbial Curing of Cement for Energy Applications

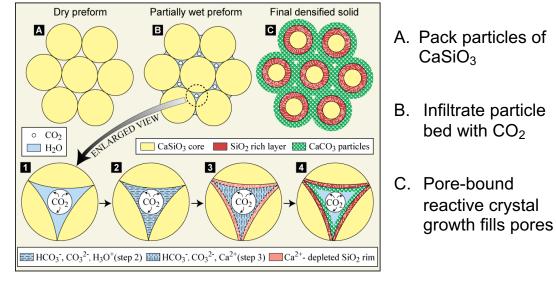
Rutgers U., Lawrence Livermore Nat'l Lab. & U. of Arizona

Richard Riman Distinguished Professor Rutgers University Department of Materials Science and Engineering riman@rutgers.edu

The Team

- Rutgers University (RU) Richard Riman & Daniel Kopp
 - Cement & Concrete formulation, curing, and testing
 - Tech2Market Analysis
- Lawrence Livermore National Labs (LLNL) Yongqin Jiao
 - Microbial Engineering
 - Mechanical & Chemical Modelling
- University of Arizona (UofA) Hongyue Jin
 - Process optimization for sustainability
 - LCA & TEA

November 6, 2020


Cast-in-place carbonate cement concrete that cures via microbial activity to create monoliths of any length scale.

Background: Carbonate Cement

Carbonate Cement (CaSiO₃) – cement cures via a CO_2 gas aqueous solution reaction with CaSiO₃ to create a durable carbonate-bonded structure.

- Invented at Rutgers
- Commercialized by Solidia Technologies
- Process has thickness limitations
- Requires CO₂ supply chain

 $CaSiO_3 + CO_2 \rightleftharpoons CaCO_3 + SiO_2$

The Concept

Objective: develop a castable/pourable, self-curing carbonate cement concrete using CO₂ produced internally via microbes

Summary

- A mix containing bacteria, CaSiO₃, & aggregate
- Activated by addition of nutrient solution to mix
- CO₂ released by bacteria hardens concrete
- Any thickness can be cast and solidified

Impact

- CO₂ emissions reduced by up to nearly 3 Mt/y
- Reduced time and cost to complete construction projects
- Eliminates need for a CO₂ supply chain

Major Objectives

- Select a microbial strain that is:
 - Capable of producing CO₂ from *selected-nutrient*
 - Tolerant of cement solution conditions & processing conditions
- Engineer the chemistry and microstructure to facilitate the microbial curing mechanism
 - Process Scale-up:
 - Dilute slurries → Concentrated Slurry → Cement Monolith → Mortar Monolith → 2" x 2" x 2" Concrete Monolith → 4" x 8" Cylindrical Concrete Monolith
- Develop a predictive mechanical model that integrates:
 - Reaction kinetics, thermodynamics, and mechanical performance
- Concurrent LCA & TEA to ensure no environmental or economic RED-FLAGS

Challenges and Risks

Fundamentally new curing mechanism and microstructure paradigm brings many new challenges and risks:

Challenges:

- Concrete processing creates basic conditions that are detrimental to microbial viability
- Microbe and nutrient site occupancy needs to be in "the right place at the right time"
- Risks:
 - Poor microbial viability in concrete processing conditions
 - Concrete strength gain is low due to microstructural limitations
 - Microbial production cost is too high

Results

1. Microbial Engineering

Strain was down-selected and viability was demonstrated under all relevant concrete processing conditions

▶ 2. Concrete Engineering

- >40 mol% carbonation observed via microbial curing
 - Advancing the state-of-the-art:
 - Literature demonstrates carbonation of ONLY pure aqueous species
- Compressive Strength: Experimental > Control
 - Advancing the state-of-the-art:
 - Literature never demonstrates high-strength materials

TEA & LCA

Techno-Economic Analysis*

Life Cycle Analysis

Cost Category (\$/ton)	MBC-A	MBC-B
Material	80.2	88.1
Utility	3.4	3.3
Other direct	2.4	2.3
Capital	0.3	0.3
Indirect	4.6	4.6
General	21.5	23.4
Total production cost (\$/ton)	112.4	122.0
Portland cement price (\$/ton)	123.5	
Net profit margin ratio	9%	1%

Cement System	Global Warming Impact (kg CO ₂ eq.)	% Reduction
Portland cement	0.9	-
MBC A	0.21-0.89	1% to 77%
MBC B	0.24-0.90	0% to 74%

*MBC = Microbially cured cement

Potential Collaboration Opportunities

- Microstructure-strength Simulations
- Fractography
- In Situ Environmental SEM
- MR-CT Imaging Of Concrete
- Energy-dispersive X-ray Diffraction Under Mechanical Load
- Standardized Concrete Testing

Summary

Objective: Develop a carbonate cement concrete using internally produced CO₂ curing via microbes

Microbial Curing

- A mix containing bacteria, CaSiO₃, & aggregate
- Activated by addition of nutrient solution to mix
- CO₂ released by bacteria hardens concrete (>25 MPa)
- Any thickness can be cast and solidified (cast-in-place)

Projected Impact

- CO₂ emissions reduced by up to nearly 3 Mt/y
- Reduced time and cost to complete construction projects
- Eliminates need for a CO₂ supply chain

Thank you Joseph King & the ARPAe team (Madhav Acharya, Sean Vail, Rosemary Cox-Galhotra) for the helpful suggestions and generous ARPAe support!

