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Abstract
The carbon intensity (CI) of biofuel’s well-to-pump life cycle is calculated by life cycle analysis (LCA)
to account for the energy/material inputs of the feedstock production and fuel conversion stages and
the associated greenhouse gas (GHG) emissions during these stages. The LCA is used by theCalifornia
Air Resources Board’s LowCarbon Fuel Standard (LCFS) program to calculate CI andmonetary
credits are issued based on the difference between a given fuel’s CI and a reference fuel’s CI. Through
the Tier 2 certification programunder which individual fuel production facilities can submit their
ownCIswith their facility input data, the LCFS has driven innovative technologies to biofuel
conversion facilities, resulting in substantial reductions inGHGemissions as compared to the baseline
gasoline or diesel. A similar approach can be taken to allow feedstock petition in the LCFS so that
lower-CI feedstock can be rewarded.Here we examined the potential for various agronomic practices
to improve theGHGprofiles of corn ethanol by performing feedstock-level CI analysis for the
MidwesternUnited States. Our systemboundary covers GHG emissions from the cradle-to-farm-gate
activities (i.e. farm inputmanufacturing and feedstock production), alongwith the potential impacts
of soil organic carbon change during feedstock production.We conducted scenario-basedCI analysis
of ethanol, coupledwith regionalized inventory data, for various farming practices tomanage corn
fields, and identified key parameters affecting cradle-to-farm-gate GHGemissions. The results
demonstrate large spatial variations inCI of ethanol due to farm input use and landmanagement
practices. In particular, adopting conservation tillage, reducing nitrogen fertilizer use, and
implementing cover crops has the potential to reduceGHGemissions per unit corn producedwhen
compared to a baseline scenario of corn–soybean rotation. This work shows a large potential emission
offset opportunity by allowing feedstock producers a path to Tier 2 petitions that reward low-CI
feedstocks and further reduce biofuels’CI. The prevalence of significant acreage that has not been
optimized for CI suggests that policy changes that incentivize optimization of this parameter could
provide significant additionality over current trends in farm efficiency and adoption of conservation
practice.

1. Introduction

Since sustainable agriculture was described in the 1977
and 1990 ‘FarmBills,’ there has been a growing interest
among the agricultural community in addressing the
issue of ‘sustainability’ by developing and adopting
integrated and innovative farming practices (National
Research Council 2010, United States Department of

Agriculture Office of the Chief Economist 2019).
Several important farming practices, including con-
servation tillage, cover crops (CC), and nutrient
management, have been shown to reduce greenhouse
gas (GHG) emissions, or lower carbon intensity (CI),
in crop production (ICF International 2016). Recently,
these practices have received particular attention from
the bioeconomy community and agencies for corn
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production, since corn accounted for 96% of all feed
grain produced in the US in year 2018, and approxi-
mately 40% of the corn grain is purchased by biofuel
producers who subsequently turn it into multiple
products including ethanol, corn oil, and animal feed
(United States Department of Agriculture Economic
Research Service 2019). Accordingly, stakeholders
have worked together to conduct thorough CI evalua-
tion for various farming practices, adopting the life
cycle analysis (LCA) approach to potentially reward
low-CI feedstock production. The California Air
Resources Board’s Low Carbon Fuel Standard (LCFS)
program adopted the LCA technique to calculate the
CI of biofuels and issues credits to those that have
lowerCI than baseline gasoline or diesel.

In its current design, the LCFS allows for indivi-
dual biorefineries to receive additional LCFS credits by
lowering the CIs of their biofuels (Tier 2 pathway),
creating a strong incentive for each biorefinery to
minimize its GHG emissions by tying the plant’s rev-
enue directly to its carbon footprint. On the other
hand, the LCFS program does not account for varia-
tions in upstream feedstock GHG emissions (i.e. farm
input manufacturing and feedstock production), even
though these activities contribute 36% to the well-to-
wheels GHG emissions of corn-based bioethanol
(Energy Systems. Argonne National Laboratory 2018)
and show regional variations in energy consumption
and fertilizer/chemical use (i.e. farming inventory)
associatedwith diverse farming practices.

Several studies have addressed the regional varia-
tions in GHG emissions of feedstock production. For
example, Pelton (2019) compiled county-level nitro-
gen (N) fertilizer share and application rate to quantify
spatial GHG emissions from US county-level corn
production. Smith et al (2017) documented county-
level variability in yield, water consumption, and types
of N fertilizers used, with the purpose of designing
transparent supply chains. Neither study has con-
sidered the effects of land management and soil
organic carbon (SOC) changes, which have been
recognized as powerful carbon emission/sink sources
in the agriculture sector (United States Environmental
ProtectionAgency 2019).

To this end, Qin et al investigated the impacts of
land management change (LMC) on the SOC stocks
and the overall GHG emissions from corn-stover bio-
fuel, by employing a process-based model to simulate
spatially explicit (i.e. US county-level) SOC dynamics
under various farming practices (Qin et al 2018).
However, this study did not consider the variations in
GHG emissions introduced by regionalized farming
inventory. On the other hand, ICF International
(2016) evaluated the potential of land management
practices (LMC) to increase SOC stocks and dealt with
regional variations in farming inputs. However, they
utilized an empirical approach to estimate a national-
average SOC sequestration value associated with til-
lage conversion under corn farming (West and

Post 2002) and applied it to ten farm production
regions in theUS, while tillage practice can have differ-
ent effects on SOC stocks in different regions because
of local factors.

We aim to provide a complete quantification of CI
throughout the cradle-to-farm-gate activities by con-
ducting scenario-based analysis for selected farming
practices, leveraging regionalized life cycle inventory
data, and using spatially explicit SOC modeling tools.
The impacts of these scenarios on the variations of
feedstock GHG emissions are then evaluated in com-
parison with national estimates. Moreover, key GHG
emission sources during the cradle-to-farm-gate
activities for feedstock production have been identi-
fied. This information can enable feedstock producers
to adopt regionally appropriate practices to minimize
their emissions. Linking LCA information to farm-
gate CI could allow Tier 2 certification of farms and
provide strong incentives to adopt low-CI practices.

2.Materials andmethods

2.1. Localizedmodel and cradle-to-farm-gate GHG
emissions
In this study, we applied the Greenhouse gases,
Regulated Emissions, and Energy use in Technologies
(GREET)model to conduct feedstock-level CI analysis
(Energy Systems. Argonne National Laboratory 2018).
GREET is widely used by regulatory agencies, indus-
tries, and research organizations to evaluate energy
consumption, GHG emissions, criteria air pollutant
emissions, andwater consumption.

The system boundary of our analysis is limited to
cradle-to-farm-gate activities, since we aim to quantify
CI at the feedstock level. Three GHGs, namely CO2,
CH4, and N2O, are considered (table 1), while direct
soil CH4 emissions are excluded from our analysis
since they are not significant (ICF International 2016,
Locker et al 2019). The biogenic carbon uptake during
the growth of corn grain is also excluded because it is
assumed to be released back to the atmosphere during
consumption (e.g. combustion of corn-based ethanol)
(Canter et al 2016). The energy and material flows
associated with upstream fertilizer/chemical manu-
facturing and feedstock production stages are the key
components of cradle-to-farm-gate GHG emissions.
Energy is consumed in planting, harvesting, and dry-
ing biomass. Fertilizers are used to boost the yield,
while herbicides and pesticides are applied to reduce
weed and insect damage. More details on fertilizer/
chemical use data collection are available in the sup-
porting information (SI) available online at stacks.iop.
org/ERL/15/084014/mmedia.

In GREET, N2O emissions related to corn farming
are calculated by the Intergovernmental Panel on Cli-
mate Change’s (IPCC’s) 2006 approach using emis-
sion factors (EFs) from various N sources (Dong et al
2006). Two sources of N inputs to soil are considered,
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namely, N from fertilizer application and N in crop
residues left in the field after harvest. The content of N
in crop residues is estimated using the harvest index
and N contents of above- and below-ground biomass
(Wang 2007). The N2O EFs are taken from the IPCC
report (Dong et al 2006) or the literature review (Xu
et al 2019).

GREET also considers the potential impact of SOC
changes associated with farming practices in its GHG
accounting. In the present study, spatially explicit SOC
EFs were calculated using a process-based model (i.e.
parameterized CENTURYmodel) that simulates SOC
dynamics under various LMC. The parameterized
CENTURYmodel was developed as an inverse model-
ing tool and it was calibrated for a long-term field trial
in the US (Kwon and Hudson 2010) and North Amer-
ican croplands (Kwon et al 2017). Using themodel, the
SOC change rates are quantified for a 30 year time per-
iod in the 0–100 cm soil layer. One key assumption is
that only current farmland can be adapted for different
farming practices or LMC, while the non-farmland
cannot, since the conversion of which to corn produc-
tionwould cause land use change-inducedGHG emis-
sions that have already been incorporated in biofuel
LCAs (Qin et al 2018). More details on SOCmodeling
and associated data sources are provided in the SI.

Farm management scenarios have large effects on
both upstream GHG emissions and LMC-induced
SOC changes (Liu et al 2019b); therefore, outputs from
GREET and SOCmodeling were combined to provide
a more comprehensive portfolio for assessing the
GHG impacts of biofuels.

Note that all benefits and burdens associated with
the implementation of scenarios are allocated to corn
grain, since we treated corn stover as waste left in the
field to reflect the current and near-future practice.
The cradle-to-farm-gate GHG emissions, presented in
the unit of CO2 equivalent (CO2e) per bushel of corn,
were converted to the unit of CO2e permegajoule (MJ)
corn ethanol by applying the corn-grain-to-ethanol
conversion rate (0.35 bushels of corn per gallon of
ethanol) and the lower heating value of ethanol

(80.5MJ per gallon) as the volume-to-energy unit con-
version factor. We conducted this unit conversion
since CI is commonly measured in the unit of CO2e
per unit of energy.

2.2. Landmanagement practices
Weconducted analyses for a total of 192 scenarios with
the baseline scenario depicting the business-as-usual
(BAU) farming practice (table 2). SOC change is
calculated as the relative change in SOC levels between
a farm adopting alternative farming practice and BAU
practice (Qin et al 2015). A negative SOC EF indicates
net soil carbon gain, while a positive one indicates net
SOC loss, compared to BAU. The national-average
inventory for corn production was also estimated by
applying corn acreage planted in each state as weight-
ing factors and used as the comparison base.

2.2.1. Crop rotationwith cover crops (CC)
The two-year rotation of corn and soybean adopted as
BAU practice in this analysis results in higher corn and
soybean yields compared to the respective monocul-
tures (Behnke et al 2018). The county-level yield
information for both crops was collected from USDA
NASS (United States Department of Agriculture 2019)
and utilized as inputs for SOC modeling with the
assumption that their yields were recorded under the
corn-soybean rotation. This assumption is justified by
the prevalence of corn-soybean rotation inmost of US
Midwestern states, particularly those that produce
large amounts of ethanol (Green et al 2018).

Winter CC planting in a corn-soybean rotation is
gaining popularity as a conservation practice that
improves SOC stock and provides agronomic and
environmental benefits to subsequent cash crops
(Marcillo and Miguez 2017). Winter rye (Secale cereale
L.) and hairy vetch (Vicia villosa Roth) are considered
in this analysis. The latter is a legume crop and can fix
N from air into soil and provide an N benefit in the
form of reducedN fertilizer requirement. TheN bene-
fit from a legume CC can be as high as 45 kg N/ha
(United States Department of Agriculture Natural

Table 1.Key components of cradle-to-farm-gate GHG emissions and their associated data sources.

Source GHG Data Source

Corn residue left in soils N2O 141.6 gNper bushel,

1% (direct)+0.225% (indirect) (Wang 2007)
Nitrogen fertilizer application N2O 1% (direct)+0.325% (indirect) (Xu et al 2019)
Manure N2O 1% (direct)+0.425% (indirect) (Wang et al 2012)
Urea fertilizer/lime CO2 CO2 emission due to urea and lime application to field (Energy Systems. Argonne

National Laboratory 2018)
Soil carbon emissions CO2 Spatially explicitmodeling using the parameterizedCENTURYmodel (Kwon et al 2017,

Qin et al 2018)
Inputmanufacturing CO2,N2O,

CH4

UnitedStatesDepartment ofAgriculture (USDA)Agricultural ResourceManagement Sur-

vey (ARMS) (UnitedStatesDepartment ofAgriculture EconomicResearch Service 2010)
and theGREETmodel (Energy Systems.ArgonneNational Laboratory 2018)

Energy consumption CO2,N2O,

CH4

USDAARMS (United StatesDepartment of Agriculture Economic Research Ser-

vice 2010) and theGREETmodel (Energy Systems. ArgonneNational

Laboratory 2018)
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Table 2.Baseline and alternative farmingmanagement scenarios considered.

Management Baseline scenario Alternative scenario and environmental impacts Key information

Crop rotationwithwinter cover

crops (CC)
Corn (year 1) -soybean (year 2) Corn/rye - soybean Increase residue carbon and nutrients in soils and reduce soil

erosion

County-level yields; national-average

energy use forCCs

Corn/rye - soybean/vetch

Yield trend Constant (a 10 year average from
2006 to 2015)

Increase (a historical trend from1951

to 2015)
Increase residue carbon and nutrients in soils County-level yields

Nitrogen fertilizer use Constant rate Reduced rate Account forN credit of 45 kg ha-1 from vetch legumeCC County-level N application rate

and type

Tillage type National average Three tillage types (conventional tillage,
reduced tillage, no till)

Related to soil carbon sequestration and energy uses in tillage

practices

State-level energy use for each til-

lage type

Manure application No application Application Improve soil quality by adding organic carbon andnutrients County-levelmanure application rate

and type

New corn genetics (deep-root-
ing corn)

No adoption Adoption Improve productivity and/or input utilization efficiency

of corn

Deep-rooting crop varieties

Enhanced-efficiency fertilizer (nitrifi-
cation inhibitor)

No adoption Adoption Increases yield by 7%while reducing fertilizerN2O emission

by 30%
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Resources Conservation Service 2014). Qin et al (2015)
has implemented winter rye CC into the GREET by
compiling the data on energy and material consump-
tion due to winter rye cultivation and county-level rye
yields (Feyereisen et al 2013). We collected the same
type of information for hairy vetch CC (Undersander
et al 1990, PennState Extension 2010).

2.2.2. Tillage
Tillage practices are classified by the percentage of
residue remaining on the soil surface after planting.
The rest of the residue is tilled back into the soil, since
we assumed no stover harvest from the field. USDA
reports the share of corn-planted area and the percent-
age of residue remaining for four tillage types, namely,
conventional tillage (CT), reduced tillage (RT), mulch
tillage (MT), and no tillage (NT).

To reduce the complexity of CI calculation and
SOC modeling, we combined the RT and MT cate-
gories in the USDA classification into a single RT cate-
gory (more details are available in the Tillage
subsection of SI). Correspondingly, USDA’s nation-
averaged and state-averaged share of different tillage
types can be applied in this analysis (table S5 in SI).

Compiling regionalized inventory on tillage share
is necessary because different tillage practices incur
different energy use rates. The diesel fuel requirements
for various farming operations were obtained
(University of Nebraska–Lincoln Institute of Agri-
culture and Natural Resources 2019) and the average
diesel use rate was calculated for each tillage type (i.e.
CT, RT, NT) (table S6 in SI). Note that the energy use
rate for CT is almost 3.5 times as high as that for NT
practice, providing the justification for incorporating
this variation.

2.2.3. Enhanced-efficiency fertilizer (EEF)
N fertilizer management practices are crucial to
improving crop yields and reducing N losses. While
optimal rate, type, timing, and placement of N
fertilizer are important factors, efforts have beenmade
recently to develop stable EEF. It is reported that from
2005 to 2010, the use of EEF increased from 8.5% to
12.5% (Baranski et al 2018).

Here, we have evaluated one type of EEF—nitrifica-
tion inhibitor that slows down the nitrification process
where fertilizers are broken down to produce nitrates
andN2O (ICF International 2016). According to ameta-
analysis (Thapa et al 2016), nitrification inhibitor
reduced N2O emissions compared to conventional N
fertilizer by 30% and increased crop yields by 7%. These
values are leveraged when compiling the regionalized
inventory and modeling SOC change, by adjusting the
crop yields and N2O EFs. Nevertheless, GHG emissions
from the production and transportation of nitrification
inhibitor are excluded from this analysis, since their
contributions to the cradle-to-farm-gate emissions are
minor (ICF International 2016).

2.2.4.Manure
Animal manure can be used as an organic fertilizer to
improve soil quality by adding organic carbon and
nutrients (e.g.Nandphosphorus). County-levelmanure
application rates and types were used for SOCmodeling
(Xia et al 2019). Manure application has already been
implemented into the GREET model by compiling the
data on energy consumption duringmanure transporta-
tion and application. The transportation distance for
manure was estimated to be 0.367 mile and the
transportation energy intensity was 10,416 Btu/ton
manure/mile (Qin et al 2015). In term of application, it
is assumed that 73.7% of the manure is applied via
spreading and the rest is applied through direct injection
(Energy Systems. Argonne National Laboratory 2018).
Besides, the information on nutrient contents in differ-
entmanure types is also collected.

Manure N has a higher N2O EF (1.425%) (De
Klein et al 2006) as compared to fertilizer N (1.325%)
(Xu et al 2019). The trade-off between SOC accumula-
tion andN2O emissions formanure application is cap-
tured in our analysis. On the other hand, the nutrients
in manure may reduce the inorganic N and phos-
phorus fertilizer input, but this possibility has not been
considered.

2.2.5. New crop genetics
Improving productivity and/or input utilization effi-
ciency of feedstocks is another important technology
that has the potential to reduce the CI of biofuels.
Recently, Paustian et al (2016) evaluated the potential
of deep-rooting crop varieties to sequester SOC and
reduce N2O flux; in this work, the CENTURY model
was employed to estimate reference SOC stocks and
simulate their changes associated with four hypotheti-
cally altered root growth scenarios. In the present
study, we have incorporated the deep-rooting corn
variety into the SOC modeling by adjusting root
distributions, such that an additional 20% of corn root
biomass in the 0–30 cm soil layer is moved to a deeper
layer.

2.2.6. Yield trend
The yield of corn affects the yield of ethanol. If higher
per-acre yield is achieved with the same level of per-
acre chemical inputs, the CI of a MJ of ethanol
produced from the field is lower. We analyzed two
yield trend scenarios: constant and increasing yield.
The constant-yield scenario assumes yield based on
the 10 year average of county-level corn yield records
from 2006 to 2015, while the increasing-yield scenario
estimates yield using a simple regression equation
derived from county-level corn yield records from
1951 to 2015 (table S7 in SI).

There are additional management practices avail-
able to improve the feedstock CI but are not con-
sidered in the present analysis. More descriptions are
provided in SI.
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3. Results and discussion

3.1. Changing farming practice impacts feedstockCI
3.1.1. Farming energy andmaterial inputs
On the basis of national-average inventory data, feed-
stock production emits 28.5 g of CO2e per MJ of
ethanol produced. Our results using regionalized
inventory data compiled for the nine corn-farming
states demonstrate a large degree of CI variation
(figure 1). Compared to the baseline, Ohio has 12%
higher GHG emissions while Minnesota has 13%
lower. This is because an average Ohio corn grower
uses more farm inputs and energy to produce a bushel
of corn; whileMinnesota farmers use less (table S2).

When compared to the baseline scenario, the yield
increase scenario reduces the CI by 22%, as expected
because the increase in yield means that fewer inputs
are required for each bushel of corn. Similarly, CI
reduction is observed when nitrification inhibitor is
used, since its application is associated with a 7% yield
increase and a 30% reduction in N2O emissions from
N fertilizer (Thapa et al 2016).

If a vetch CC is planted after soybean in addition to
the previous corn-rye year, more GHGs are emitted.
This is because of the additional energy, fertilizers,
and herbicides required for vetch cultivation, even
after accounting for the N benefit from a legume CC.
Similar trends are observed when comparing the
scenarios where only rye CC is used and where man-
ure is applied, since both scenarios require additional
application of energy.

Finally, tillage intensity changes the cradle-to-
farm-gate emissions. The NT practice consumes less

energy and incurs less GHG emission compared to the
average tillage practice. Since we assumed that chan-
ging to deep-rooting corn would not result in addi-
tional farming energy inputs, its GHG emissions
remain the same as with the baseline scenario. It is
important to reiterate that the discussion here
(section 3.1.1) deals with farming energy and material
inputs only. The net cradle-to-farm-gate GHG emis-
sionwill be discussed separately in section 3.1.3.

3.1.2. LMC-induced SOC change
Using the parameterized CENTURY model
(section 2.1), the effects of farming practices/technol-
ogies on SOC changes can be quantified. Figure 1
indicates that diverse land management practices can
change the SOC stock. Practices and scenarios that
lead to an increase in corn yield (i.e. yield increase
scenario and nitrification inhibitor application sce-
nario) contribute positively to SOC sequestration (i.e.
negatively to SOC emissions). This finding is reason-
able, since the SOC results are represented as relative
changes compared to the baseline scenario, where
corn yield is assumed to be constant.

The implementation of CC(s) contributes posi-
tively to SOC stocks. The corn/rye-soybean system
can sequester, on average, 9 g of CO2 perMJ of ethanol
produced. If a corn/rye-soybean/vetch rotation is
used, an additional 17.6 g of CO2 can be sequestered,
clearly showing the positive effect of CC on SOC
preservation.

In terms of the tillage type, NT practice con-
tributes positively to SOC preservation, since it dis-
turbs the soil less, leading to a net CO2 sequestration of

Figure 1. Impacts of farming practices on the followingGHGemissions: (1) emissions related to farming energy andmaterial inputs
(includingN2O emissions due to LMC); (2)CO2 emissions due to LMC-induced SOC change; and (3) overall cradle-to-farm-gate
GHG emissions, calculated by combining the first two. To see the effect of each individual landmanagement practice, one practice is
varied at a time in the simulations. Each graph represents the specific practice that has been varied compared to the baseline scenario.
To examine regional variation, the bar height reflects the national-average inventory, while the error bars represent the adoption of
each practice at the state level.
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4.6 g compared to the baseline value. The application
of manure can also increase the SOC storage by 11.6 g
perMJ of ethanol produced from corn harvested from
that field. Deep-rooting corn adds more root biomass
to soil, thus also helping to improve SOC content. On
the basis of these results, the best practice for SOC
conservation is no-till, deep-rooting, corn/rye-soy-
bean/vetch rotation, with manure and nitrification
inhibitor application, under a yield increase scenario.

Figure 2 shows large variations in the relative SOC
sequestration achieved across Midwestern counties by
shifting from baseline to best practice in terms of SOC
conservation. The largest within-state variation was
found in Nebraska, where the difference is 4453 kg
CO2 per hectare per year. Even for the state that has the
smallest within-state variation, i.e. Minnesota, the dif-
ference can still be as large as 2058 kg CO2 per hectare
per year. By converting the units and distributing this
impact to the resulting fuel, we calculate that changing
practice results in a 43 g difference in CO2 emission
perMJ of ethanol produced using the national-average
corn yield of 166 bushels per acre. These results indi-
cate the necessity of conducting localized assessment
for SOC changes, since they are greatly impacted by
local environmental parameters.

While sophisticated process-based models are
applicable to provide SOC quantification with less
cost, the premise behind this assertion is that these
models can be continuously calibrated and validated
with databases of regional variations in management
practices and their impacts on SOC changes for bio-
fuel feedstock production. It should also be noted that
SOC modeling results are simulated under certain
assumptions (e.g. a 30 year-averaged climatic condi-
tion) and scenarios (e.g. constant yield versus

increasing yield) related to model inputs, and thus
should be interpreted with caution. Although longer
simulation period or changing future climatemay lead
to different results, this 30 year simulation under cur-
rent climate conditions provides sufficient justifica-
tion for further evaluation through agronomic and
policy experiments. Alternative climate scenarios
require additional measurements and are beyond the
scope of this simulation.

Alternatively, meta-analytic approaches similar to
the IPCCTier 1methodology (DeKlein et al 2006) can
help to address themagnitude and uncertainty of SOC
changes in agriculture to some degree (Paustian et al
2016). Eventually, field-measured SOC data may be
used for CI certification.

3.1.3. Overall cradle-to-farm-gate GHGEmissions
The cradle-to-farm-gate GHG emissions are calcu-
lated by combining those from LMC-induced SOC
change and those due to energy and material con-
sumption. The combination of these two sets yields a
comprehensive assessment of biofuel GHGemissions.

For the scenario involving both rye and vetch CC,
the CI of feedstock production could be as low as 7.5 g
CO2e/MJ, a 74% reduction compared to the baseline
scenario. This finding again confirms that LMC has a
large impact on the overall cradle-to-farm-gate GHG
emissions.

Figure 1 also demonstrates the comparative mag-
nitude of input-induced variation versus manage-
ment-induced variation. By comparing the regional
variations (i.e. the height of the error bar) to the
national-average value for each scenario, we can infer
that variations due to regionalized inputs and spatially
explicit SOC modeling can be at least as great as the

Figure 2. Spatially explicitmodelingwith parameterizedCENTURYmodel for additional SOC sequestration achievedwhen shifting
frombaseline to best practice, at county-level resolution.
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national-average values. This indicates the need for a
land management practice database with high spatial
resolution in order to support CI certification at the
field level.

3.2. IdentifyingGHGemission hotspots and
opportunities in feedstockCI
Figure 3 presents the highest-, average- (i.e. baseline),
and lowest-emitting practices using national-average
inventory from the 192 practices considered.

With the average-emitting practices, N2O emissions
contribute 47% to the cradle-to-farm-gate GHG emis-
sions. This is because of the high global-warming poten-
tial of N2O (265 g CO2e/g N2O) as compared to CO2.
N2O emissions originate from fertilizer and biomass
N inputs to soil. Therefore, reducing N fertilizer input
while maintaining the yield is a highly effective way to
reduce the cradle-to-farm-gateGHGemissions.

The results for the lowest-emission scenario show
that increased SOC offers great opportunities for CI
reductions. Further analyzing the results from the
lowest-emitting practices reveals the trade-off
between N2O loss and soil carbon accumulation. The
lowest-emitting practices result in more N2O emis-
sions, even after taking into account the N benefits
from the vetch CC. This finding is mainly due to the
return of additional CC biomass to the soil, which
increases the amount of N input to the soil and leads to
more N2O emissions. Under the model parameters

used in this study, the added biomass contributes to
SOC accumulation and leads to a net reduction in
GHGemissions.

N fertilizermanufacturing accounts for 25%of the
cradle-to-farm-gate GHG emissions, making it the
second largest contributor. This fact suggests that it is
important to track the amount and share of N fertili-
zers used. Planting a legume CC is a good option, since
it offers N benefits, which reduces the GHG emissions
due to N fertilizer manufacturing by 50%. New tech-
nologies that use renewable electricity to power
ammonia synthesis or increase biological fixation
through application of microbial amendments or N
fixing traits in grain could dramatically cut or elim-
inate this portion of emissions.

Other main contributors include LMC-induced
CO2 emissions and farming energy inputs; each con-
tributes roughly 11% to the cradle-to-farm-gate GHG
emissions. LMC-induced CO2 emissions have two
components: CO2 emissions from urea application
and CO2 emissions from lime application. Therefore,
reducing the urea share in theN fertilizermix and only
applying lime when necessary could reduce these
emissions. Regarding farming energy inputs, produ-
cers can reduce the tillage intensity to reduce the
energy consumption. The last category considered is
‘other chemical manufacturing,’ which accounts for
7% of the cradle-to-farm-gate GHG emissions with
the average-emitting practices.

Figure 3.Highest-, average-, and lowest-emitting practices using national-average inputs (the black points indicate the net emission
values). No regional variations are shownhere, for the sake of showing differences among practices. The bars are segmented to show
the contribution from each category of farming practice. The average emitting practice indicates the baseline scenariowhile the lowest
emitting practice is no-till, deep-rooting, corn/rye-soybean/vetch rotation, withmanure and nitrification inhibitor application,
under a yield increase scenario.
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When all emissions and SOC changes are com-
bined as shown in figure 3, the lowest-emitting prac-
tices result in a net GHG sequestration of 15.9 g MJ−1,
owing to substantial SOC sequestration.

Through an emission reduction program like the
LCFS with CO2 priced at $160 per metric ton
(California Air Resources Board 2019), valuable poten-
tial credits could be a strong incentive to encourage
low-CI farming practices. Relative to the national-aver-
age cradle-to-farm-gate GHG emissions under the
baseline scenario, a farmer implementing the lowest-
emitting practices could be rewardedwith $279/acre in
the LCFS market. Further, regional variations that
come from the regionalized farming energy and mat-
erial inputs, and localized factors (i.e. soil and climate
characteristics), may offer additional regionalized LCFS
incentives.

4. Conclusions

Our analysis reveals remarkable differences in baseline
values and suggests that farmers in the same region
that use different practices may provide feedstocks
with vastly different CI. Regulations such as the LCFS
offer a platform to recognize these opportunities to
encourage farming inmore favorable regions and with
lower-CI farming practices, to reduce the CI of
biofuels in particular and agricultural GHG emissions
in general. Furthermore, the regional variations and
LMCs would have positive effects on other environ-
mental attributes, providing co-benefits (Liu et al
2018a, Liu et al 2018b, Liu et al 2019a, Liu and
Bakshi 2019, Rugani et al 2019). Some of the co-
benefits that are particularly important to agricultural
activities include soil fertility improvement, weed
control, and nutrient runoff regulation. Thus, reward-
ing these practices under LCFS will achieve these co-
benefits as well as CI reductions.

The goal of policy is to hasten trends and incenti-
vize behavioral change. The additionality of a policy
change refers to the ability of the policy to create addi-
tional change beyond a trend that already is occurring
due to benefits outside of the policy. Because of the co-
benefits to practice change, there may already be a
trend toward broader adoption.

We feel that it is unlikely that a Tier 2 policy
change would not create additional adoption of con-
servation practice. This is because none of these prac-
tices (no-till, etc) are new and these co-benefits are
widely documented, which allowed us to perform this
study. The fact that there is still significant acreage at
higher CI than the local potential indicates significant
additionality could be achieved with this incentive
structure. To directly assess a new policy’s effective-
ness, regulators and researchers should monitor addi-
tionality through counterfactual analysis. The details
of this research can be undertaken by future studies in
estimating the economic impact of practice change,

forecasting adoption of conservation practice based on
current and past trends, and comparing geographic
differences in biofuelmarkets.

This study is based on statistical data, approx-
imation to finer regional resolution, and process
model simulations to show CI reduction potentials of
a future field-level certification system. Future systems
capable of direct measurement of farm emissions will
generate even more enticing options to incentivize
outcomes rather than practice. Since all emissions are
driven by local biological conditions in the soil and
cropping systems, local monitoring can replace inven-
tory-based systems and allow farmers to optimize
their system forminimal emissions. The real-time, on-
site monitoring system, e.g. chamber-based flux mea-
surement (Maurer et al 2017), will offer insights on
tradeoffs between yield, input applications, and agro-
nomic practice leading to the generation of extremely
low-CI practices, besides providing needed data for
verification of Tier 2, field-level certification for LCFS
and similar regulations.

Inclusion of biorefineries in Tier 2 CI systems has
driven significant innovation at the plant level, includ-
ing improved milling, drying, heat generation, yeast,
co-product handling, and others. In much the same
way, Tier 2 certification at the farm level will create
incentives for the entire agriculture input sector to
innovate around lower CI. This policy could drive
broad innovation in agriculture including providers of
genetically modified crops, input manufacturers, bio-
engineers working on N-fixing organisms, data plat-
forms, and precision agriculture sensors. Given the
reach of the ethanol industry and the rapid adoption of
valuable technology by farmers, new policies are
expected to spur significant innovation and drive
dramatic reductions in cradle-to-farm-gate GHG
emissions.
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