

Hydrogen Production through SMR with CCS

2021 ARPA-E Methane Pyrolysis Annual Program Review Virtual Meeting

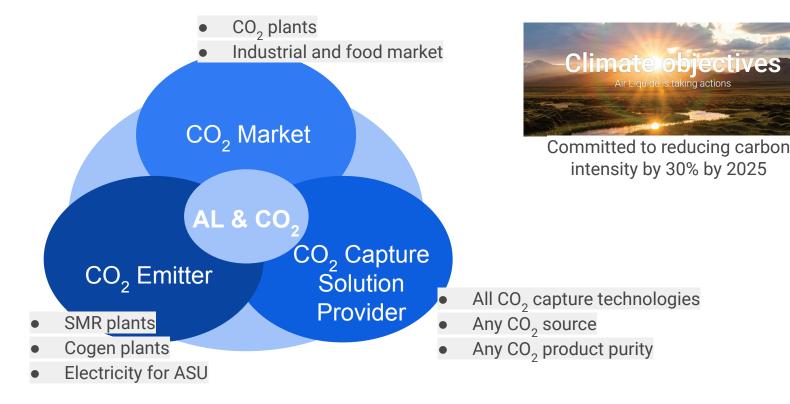
Chendhil Periasamy

January 12, 2021

THIS DOCUMENT IS PUBLIC

Agenda

- Air Liquide and CCS
- SMR with CCS Options
- Port-Jerome Demonstration
- **Hybrid Technologies**

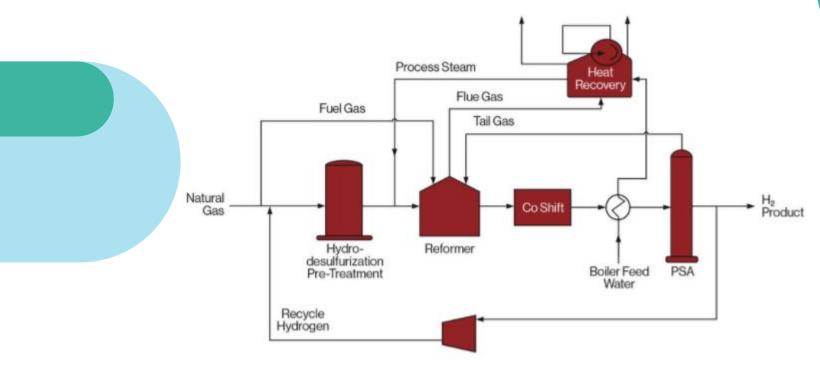


THIS DOCUMENT IS DURING

AIR LIQUIDE, A WORLD LEADER IN GASES, TECHNOLOGIES AND SERVICES FOR INDUSTRY AND HEALTH

2021 ARPA-E Methane Pyrolysis Annual Program Review Virtual Meeting

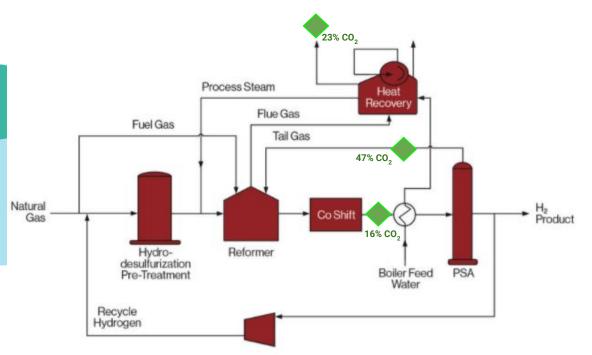
Air Liquide and CCS


THIS DOCUMENT IS PUBLIC

AIR LIQUIDE, A WORLD LEADER IN GASES, TECHNOLOGIES AND SERVICES FOR INDUSTRY AND HEALTH

2021 ARPA-E Methane Pyrolysis Annual Program Review

H₂ Production through SMR



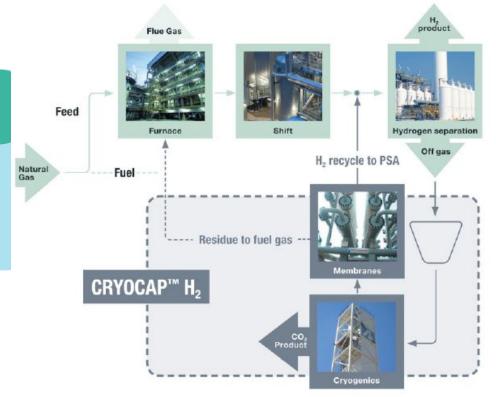
THIS DOCUMENT IS PUBLIC

AIR LIQUIDE, A WORLD LEADER IN GASES, TECHNOLOGIES AND SERVICES FOR INDUSTRY AND HEALTH

2021 ARPA-E Methane Pyrolysis Annual Program Review Virtual Meeting

H₂ Production through SMR

CO₂ can be captured at three locations


The flue gas is 23% CO₂ with nitrogen, but the other two locations are CO2 with hydrogen

CO₂ capture points and concentrations

THIS DOCUMENT IS PUBLIC

LEADER IN GASES, TECHNOLOGIES AND SERVICES FOR INDUSTRY AND HEALTH

Cryocap™ H₂ Process

- More than 97% of CO₂ from syngas can be captured
- Hydrogen production increase ranges from 10 to 15%

THIS DOCUMENT IS PUBLIC

THIS DOCUMENT IS PUBLIC

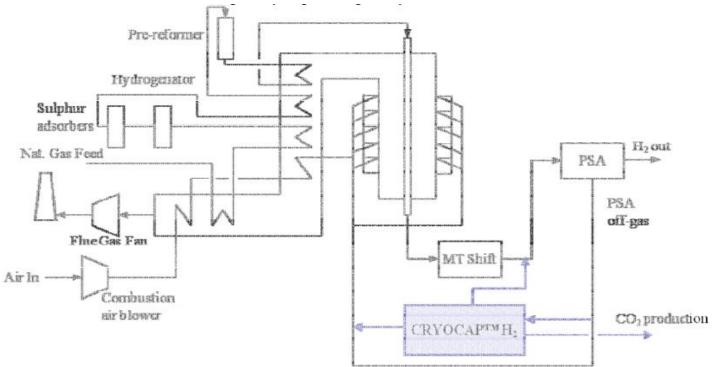
AIR LIQUIDE, A WORLD LEADER IN GASES, TECHNOLOGIES AND SERVICES FOR INDUSTRY AND HEALTH

January 2021 • Research & Development

2021 ARPA-E Methane Pyrolysis Annual Program Review Virtual Meeting

Innovation & Development Division | R&D

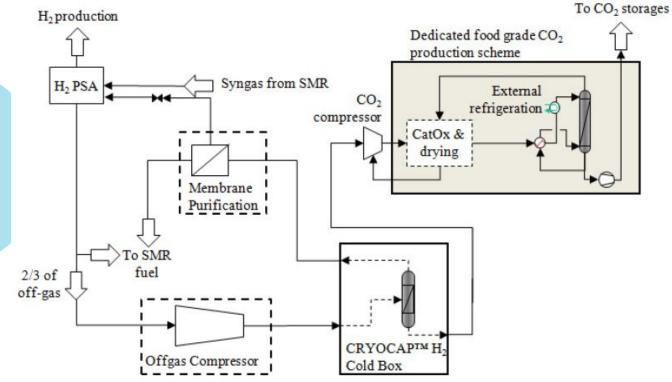
Commercial Scale Demonstration at Port-Jérôme SMR



This Cryocap™ unit has an annual capture capacity of 100 000 tonnes of CO₂ at this site.

LEADER IN GASES, TECHNOLOGIES AND SERVICES FOR INDUSTRY AND HEALTH

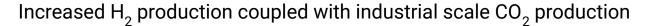
Simplified Scheme at Port-Jerome


THIS DOCUMENT IS PUBLIC

11

AIR LIQUIDE, A WORLD LEADER IN GASES, TECHNOLOGIES AND SERVICES FOR INDUSTRY AND HEALTH

Process Flow Diagram



THIS DOCUMENT IS PUBLIC

12

AIR LIQUIDE, A WORLD LEADER IN GASES, TECHNOLOGIES AND SERVICES FOR INDUSTRY AND HEALTH

Commercial Operation

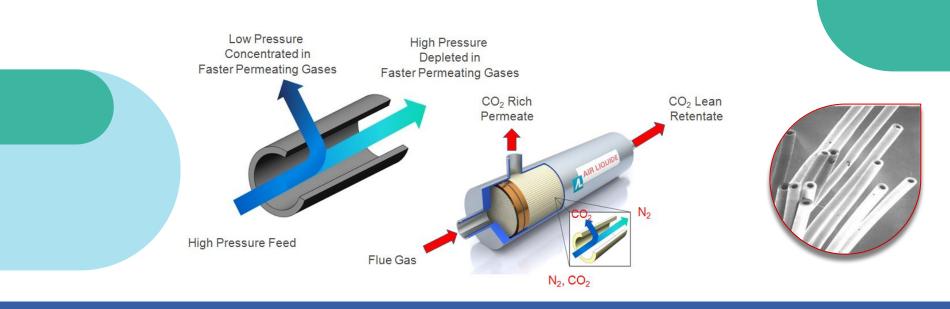
Case	SMR only	SMR + CRYOCAPTM H ₂	SMR + CRYOCAPTM H ₂
		Partial CO_2 capture (Port-Jérôme unit)	Full CO ₂ capture
H ₂ production	47 000 Nm³/hr	50 155 Nm ³ /hr	52 480 Nm³/hr
Additional H ₂ production	-	+7%	+12%
H ₂ recovery from PSA offgas	0%	87%	87%
Overall H ₂ recovery from syngas	88.0%	93.9%	98.3%


THIS DOCUMENT IS PUBLIC

AIR LIQUIDE, A WORLD LEADER IN GASES, TECHNOLOGIES AND SERVICES FOR INDUSTRY AND HEALTH

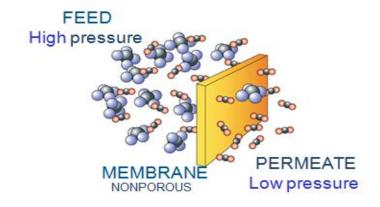
2021 ARPA-E Methane Pyrolysis Annual Program Review Virtual Meeting

Hybrid Systems

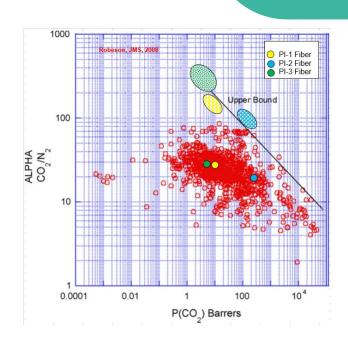

- Cryogenic solutions have two advantages:
 - High purity of the CO₂
 - Liquid CO₂ Product

- Hybridization of the process to achieve high recovery of CO₂
- Recovery with PSA or Cold Membranes

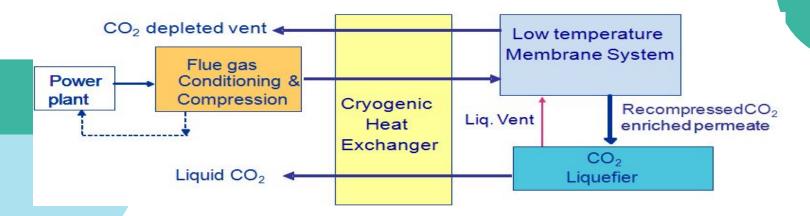
Hollow Fiber Membranes



Hollow fibers allow low cost manufacture of membranes with high surface area per unit volume. Large natural gas installations have been installed at membrane costs of ~\$20/m².


THIS DOCUMENT IS PUBLIC LEADER IN GASES, TECHNOLOGIES AND SERVICES FOR INDUSTRY AND HEALTH 2021 ARPA-E Methane Pyrolysis Annual Program Review

Innovation & Development Division | R&D


Air Liquide Cold Membrane Technology

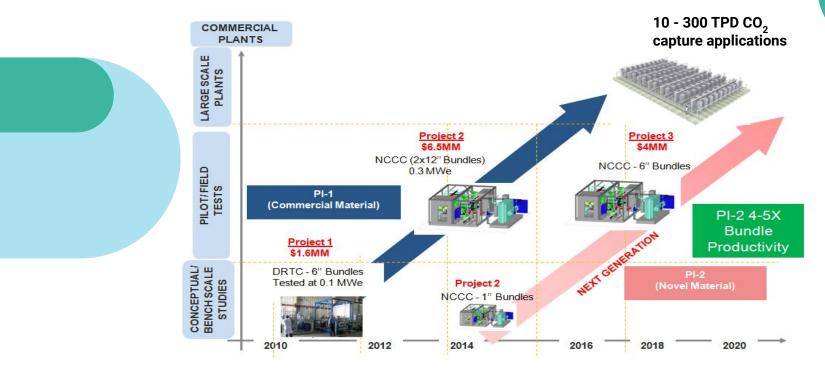
- Why Cold? -- Improve selectivity without loss of productivity
 - Discovered by Air Liquide R&D in 2008: Improved CO, selectivity at T below ambient
- Why PI-2? -- Improved productivity lowers cost
 - 4-5 X higher CO₂ productivity/bundle

Cold Membrane Process

- Pre-concentration of CO₂ by highly selective membrane before liquefier
- Energy integration between membrane/liquefier through heat exchange
- Efficient recovery of compression energy
- Direct production of liquid CO₂
- High purity suitable for EOR / sequestration / consumer applications

THIS DOCUMENT IS PUBLIC

I AIR LIQUIDE, A WORLD LEADER IN GASES, TECHNOLOGIES AND SERVICES FOR INDUSTRY AND HEAD


18 January 2021

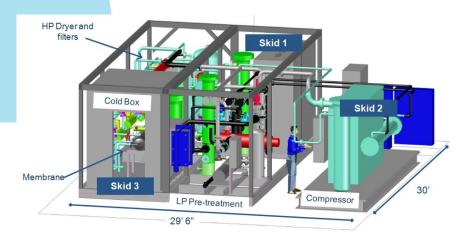
Research & Development

Virtual Meeting

DOE Funded Projects Timeline

THIS DOCUMENT IS PUBLIC

19


AIR LIQUIDE, A WORLD LEADER IN GASES, TECHNOLOGIES AND SERVICES FOR INDUSTRY AND HEALTH

2021 ARPA-E Methane Pyrolysis Annual Program Review

Flue Gas Testing - Coal Plant flue gas

3,000+ Hours operation PI-1 3,000+ Hours operation PI-2

Summary

- SMR with CCS:
 - CryocapTM $H_2 \rightarrow$ Increase in H_2 production while also capturing CO_2
 - Hydrogen production increase ranges from 10 to 15%
 - Partial capture at 60+% CO₂ recovery
 - Hybrid Process can capture 90+% of CO₂ from SMR Flue gas
 - Cold Membrane technology can be implemented in SMR

We are thankful to DOE for a decade of successful partnership with cold membranes

- US DOE: Andrew O'Palko, Sheldon Funk, José Figueroa
- NCCC Team: Frank Morton, Tony Wu, Graham Bingham
- Air Liquide: Dave Hasse, Dennis Calvetti, Gerard Gagliano, Trapti Chaubey, Tim Poludniak, Judy Huss, Raja Swaidan, Pierre-Philippe Guerif and Chendhil Periasamy
- Some material in this presentation is based on work supported by the Department of Energy National Energy Technology Laboratory under Award Number DE-FE0004278 (completed), DE-FE0013163 (completed), and DE-FE0026422 (just finished).

"This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof."

THANK YOU

THIS DOCUMENT IS PUBLIC

AIR LIQUIDE, A WORLD LEADER IN GASES, TECHNOLOGIES AND SERVICES FOR INDUSTRY AND HEALTH

2021 ARPA-E Methane Pyrolysis Annual Program Review Virtual Meeting