Hydrogen Purification Technologies Overview
2021 ARPA-E Methane Pyrolysis Annual Program Review Virtual Meeting

Minish Shah
Clean H₂ Technologies, R&D
Tonawanda, NY
January 12, 2021
Overview of H₂ Purification Technologies

PSA (Pressure swing adsorption)
- Most common method used in H₂ plants
- Suitable for small to very large capacities
- Requires feed at pressure
- Produces H₂ at pressure and impurities are removed at near-ambient pressure in tail gas
- H₂ purity of up to 99.9999 vol.% achievable

Membranes
- Used in niche H₂ separation applications (e.g. syngas ratio adjustment, recovery from H₂-rich off gases)
- Economical at lower capacities
- Requires feed at pressure
- Produces H₂ at low pressure and impurities are removed at about feed pressure in the retentate
- Product H₂ compressor may be required
- H₂ purity is 95 – 98% vol. from a single stage
PSA technology: Layered Bed for H_2 Purification

Layer 1: non adsorbed product
Layer 2: adsorbed impurities (design basis for PSA)
Layer 3: aromatics, H_2S, H_2O, HCl
Layer 4: strong adsorption forces

He, H2, N2, CO, CH4, CH4, C2Hn, C3Hn, CO2, C3Hn, C4Hn, C5+, aromatics

weak adsorption forces
PSA Equipment – Supplied as Package Unit

- Adsorber Vessel and Tail Gas Drum
- Prefabricated Valve Skid
- Process Control System
- Adsorbent Material
Applications for PSA Hydrogen Recovery

Feed Gas

Feed Gas Sources

- **Synthesis Gases:**
 - Steam Reformer
 - Partial Oxidation
 - Gasification
 - CH4 pyrolysis

- **Refinery Off-Gases:**
 - Catalytic Reformer
 - CCR
 - Aromatic Plants
 - other H2-rich streams

- **Petrochemical Off-Gases:**
 - Ethylene Plants
 - Methanol Plants
 - Ammonia Plants

- **Coke Oven Gas**

Pure Hydrogen Product

Hydrogen Consumers

- Refinery:
 - Hydrocracker
 - Hydrodesulfurization

- Ammonia Synthesis

- MeOH Synthesis

- Petrochemical Processes:
 - Olefin & Polyolefin
 - Aromatics
 - Hydrogen Peroxide

- Others:
 - Iron & Steel Industry
 - Float Glass Production
 - Food Industry
 - Electronic Industry
 - H2 Fuel / Fuel Cells

Typical Ranges

<table>
<thead>
<tr>
<th></th>
<th>Feed Gas Sources</th>
<th>Pure Hydrogen Product</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pressure</td>
<td>5 – 70 bar(a)</td>
<td>1.1 – 7 bar(a)</td>
</tr>
<tr>
<td>H2 content</td>
<td>30 – 99 vol. %</td>
<td>99 – 99.999 vol.%</td>
</tr>
<tr>
<td>Temperature</td>
<td>10 – 40 °C</td>
<td></td>
</tr>
<tr>
<td>Flow</td>
<td>Up to 500,000 Nm3/h</td>
<td></td>
</tr>
</tbody>
</table>

Tailgas (Impurities + H2)

Utilized as Fuel Gas:
- to fuel gas network
- to reformer furnace

Typical Range

<table>
<thead>
<tr>
<th></th>
<th>H2 purity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pressure</td>
<td>99 – 99.999 vol.%</td>
</tr>
</tbody>
</table>
Polymeric Membranes in Gas Separation

Glassy Polymers

- Gases dissolve into surface
- Diffusion controlled transport
- More soluble components permeate quicker (small molecule → high flux)
- \(\text{H}_2, \text{He}, \text{CO}_2 \) removal/recovery processes

Typical Permeation Properties

<table>
<thead>
<tr>
<th>Slow</th>
<th>Glassy-Polymer</th>
<th>Fast</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{C}6\text{H}{14})</td>
<td>(\text{C}_3\text{H}_8)</td>
<td>(\text{C}_2\text{H}_6)</td>
</tr>
</tbody>
</table>

01/12/2021 Hydrogen Purification Technologies Overview – presented at the 2021 ARPA-E Methane Pyrolysis Annual Program Review Virtual Meeting
Membrane Applications for Hydrogen Separation

- Syngas H₂:CO ratio adjustment by removing some hydrogen
- Hydrogen extraction from NG-H₂ mixture
- Hydrogen recovery from refinery off-gas streams
- Hydrogen recovery from purge streams in different processes
- H₂ rejection from olefin streams
Considerations for H₂ Purification in Methane Pyrolysis Plants

- Pre-cleanup including separation of solids and liquids from raw H₂ stream
- Feed compression to desired pressure for separation
- Full characterization to define all the components including trace impurities
- Integration of purification technology with CH₄ pyrolysis
- H₂ purification technology selection and optimization will depend on
 - Production capacity
 - Feed pressure and composition
 - Product purity and recovery targets
 - Product and tail gas or retentate pressures
 - Integration with rest of the process (use of tail gas or retentate)

Final Solution Could be PSA, Membranes (Single or Multi-Stage) or Membrane-PSA Hybrid
Thank you for your attention.

Linde Inc.
Minish Shah
Tel +1 716-879-2623
Minish.shah@linde.com