

Wide Band-Gap Semiconductor Amplifiers for Plasma Heating and Control

GAMOW Kickoff Meeting January 21–22, 2021

Mr. Michael Paluszek, Princeton Fusion Systems Professor Minjie Chen, Princeton University Dr. Sreekant Narumanchi, National Renewable Energy Laboratory Dr. Peter Losee, UnitedSiC

Team members and roles

Princeton Fusion Systems

- Overall lead organization
 - Pulse generator design
 - Control amplifier design
- Wave generator design
 - Support all power electronic design
- National Renewable Energy Laboratory > Thermal design for all boards
- UnitedSiC

Wide Band-Gap SiC cascodes for the power electronics

Princeton University

High-level motivation, innovation, and goals of the project

- Power electronics are a critical part of fusion reactors
 - Plasma heating
 - Plasma feedback control
 - Support functions
- Requirements
 - High efficiency
 - Compact
 - Produce lowest possible thermal loads
 - Low cost

- Identify all applications of power electronics for fusion
 - Include existing fusion machines and new fusion machines under development by ARPA-E and commercial companies
- Design and build prototype boards for both wave heating and pulse generation that are high efficiency, compact and low-cost
- Use 2 kV SiC cascodes to implement the boards
- Implement high efficiency thermal control

Key Technologies

January 27, 2021

Insert Presentation Name

3

Identification of Power Requirements

- Heating
- Plasma control
- Heat to power conversion systems
- Superconducting coil cooling
 - It can take 6 months to cool down superconducting coils so a failure is very costly
- Neutral beam heating power supplies
- Discussed requirements with Dr. Steven Cowley of PPPL
 - Stellarators (ideally) only need a start-up pulse
 - Tokamaks have numerous systems requiring high reliability power sources
 - Will talk to the designer of the TFTR power system and other experts
- Zoom meeting scheduled with Tokamak Energy

Major Tasks, Milestones, Risks, and Desired project outcomes

M 1.2 Fusion industry survey

- M 2.2 Cascode design
- M 3.1- M 3.4 Board design
- M 4.1 Thermal control demonstration
- M 5.1 M 6.2 Integrate thermal and board design

- M 1.2 Comprehensive study of power electronics for fusion reactors
 - Will be useful for this project and all fusion projects
 - Other vendors will benefit
 - Help guide board requirements
- M 2.2 2 kV Cascodes
 - Wide industry applicability
- M 3.1- M 3.4 High power board prototypes
- M 4.1 High power thermal control
- M 5.1 M 6.2 Prototype boards for fusion application testing

Risk Mitigation

- SiC may not produce sufficient power density at desired frequencies
 - In discussions with GaN providers
- The added cost and complexity of combining small boards may make them less cost-effective at very high power
 - The optimal combination of per device power and number of boards will be determined
 - Closed loop control should allow for larger numbers of boards
 - Includes fault detection
 - Can build higher power SiC devices using different geometries
 - Cooling may limit board density
- Turnkey boards may not be attractive to fusion power companies
 - License the core technology
 - Build custom solutions

6

Metrics

				[
Switch	Voltage Rat-	$R_{ds,on}$ (mW)	C_{oss} (pF,	Recommende	Gate Charge	Package
	ing		@1000V)	Gate Drive	(nC)	
State-of-Art	1700V	80	105	+20V on -	120	Thru-Hole
А				10V/+25V		
State-of-Art	1700V	45	171	+20V on -	188	Thru-Hole
В				10V/+25V		
UnitedSiC	2000V	65	65	+10-12V on	27	SMT
UJ4SC20065				+/- 20V max		
(proposed)						

Table 1: Performance matric for SiC devices

Quantity	Value
Input Voltage (DC)	500V
Input Current (DC)	3A
Power Rating	1.5kW
Switching Frequency	6.78 - 13.56 MHz
PCB Area	10cm x 10cm
Targeted Efficiency	90%
SiC Device	UF3C170400K3S

Table 2: Performance Metric for CW Drive

	Present State of the Art	Ultimate Target	To be achieved in this
			project
Switching Transistors	1700 V R_{ds} 90 m, C_{oss}	2000 V 30 m C_{oss} 58 pF	2000 V 30 m C_{oss} 58 pF
	171 pF	100 A	100 A
Power Amplifiers	2 kW/board 20% efficient	10 kW/board 90% effi-	1.5 kW/board 80% effi-
		cient	cient
Control Amplifiers	Thyristor based 20% effi-	SiC based 90% efficient	SiC based 80% efficient
	cient		
Fast pulse	Ignitron, 4 year lifetime	SiC based, > 50 year life-	SiC based, > 50 year life-
		time	time
Cost Metric	\$1000/kW	\$8/kW	\$20/kW

Table 3: Impact on fusion machines

7

T2M and Aspirational Follow-on Plans

- ► An example
 - 500 kW needed for PFRC
 - For PFRC that would be \$500K for power electronics for heating
 - Additional savings due to simplified installation, etc.
 - Because multiple boards are used, the system is failure tolerant and increases the availability of a fusion power power lowering the LCOE
- Replacing failure prone items like ignitrons will lower costs
- Would also support systems for magnetic cooling
 - A failed magnet could shut down a fusion machine for a year

- Test & deployment plans/aspirations
 - Spherical tokamaks
 - Compact tokamaks
 - Stellarators
 - Mirrors
 - Pulsed machines
- Heating, control, other power electronics
- Produce prototype boards for selected concepts
 - Provide to customers for testing
- PFS and UnitedSiC are commercial entities and will commercialize the boards and semiconductor devices

