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Goal: Next generation of plasma-resilient/favorable materials
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Plasma Fluence or Plasma Exposure Time

Li G., Wirz R.E., “Persistent Sputtering Yield Reduction in Plasma-Infused Foams,”
Physical Review Letters, 2021

Motivation:

» Current fusion grade plasma-facing materials carry a significant
annual cost and are not plasma-favorable

« Textured surfaces can reduce sputteryield temporarily
Discovery/Innovation:

« Volumetrically-architectured materials provide persistent sputter
reduction

« Furtherand significant reduction is found by designing these
materials to allow plasma-infusion

Goals:

« Developthe next generation plasma-esilient/favorable materials
that persistently reduce sputter for fusion devices:

1. Demonstrate plasma-favorable materials by significant

reduction (up to 80-90%) of plasma-contaminating sputterants

2. Reduce operational cost by increasing the lifetime (5X steady

to 10X pulsed over SOTA) of critical fusion components
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Major tasks, milestones, risks, and desired project outcomes

> Objective
— Demonstrate multi-phase foams (MPF) that provide persistent
sputter reduction up to 80-90%

> Approach

— Use experiments and validated models to iteratively design, test,
and demonstrate the MPF design

> Major tasks and milestones
— Year1
* Critical MPF experiments to validate design models.

« Design and manufacture MPF materials to capture the
fusion-relevant design space.

— Year 2
» High-flux and high-fluence MPF testing and demonstration
« Heat Flux: 1-5 MW/m? steady, 100-300 MW/m? pulsed
« Targets
— Total Charge Fluence: 0.9-9 x 10'2C/m?
— Fusion electrodes: 108° C (Pulsed), 100 C (Steady)
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Plasma Material Interactions and Plasma-Infusion

Traditional PMI Plasma-Infused
Surfaces
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T2M and follow-on plans

- i > Test & deployment plans
g TeChnO economic targets — Engage commercial fusion partners during MPF development

— Pursue ambitiOUS ’[arge’[S in plasma_ . IfEnsure MI?chiII improve life and performance for critical and challenging
usion surfaces
facing components and electrodes _

« Assess cost benefits from both life and performance with customer input
Applications (Customers) include:

pel‘formance « Z-pinch electrodes (Zap Energy)
. « Plasma guns/injectors (General Fusion, HyperJet, TAE)
— Improve heat flux, life, total charge flux, - Bias electrodes (TAE)

« Divertors (Commonwealth Fusion)

Develop electrode and surface designs by end of Year 2 for Year 3+
deployment to customers

and O&M maintenance B

Table 1: State of the Art (SOTA) and Technical Performance Targets [12, 15, 18-22]
Metri SOTA Values Commercial Targets Project Targets * Reduced impurities :> * Increased performance
etric . . .
Steady ‘ Pulsed Steady Pulsed Steady Pulsed * Long-life surfaces Lower maintenance costs
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BONUS SLIDES
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AMPERE: Computational Modeling

SPICY Suite: Surface Particle Interaction Codes with Yield
Theory + Mesh Geometries + MC Simulations + View Factor Modeling
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AMPS: Analytical Model for

Plasma Sputtering
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