

High Efficiency, Megawatt-class Gyrotrons for Instability Control of Burning Plasma Machines

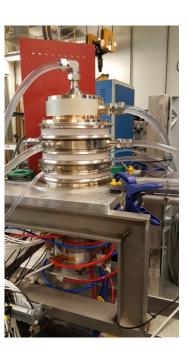
GAMOW Kickoff Meeting January 21–22, 2021

Jagadishwar R. Sirigiri, Bridge12 Technologies, Inc. Stephen J. Wukitch, Massachusetts Institute of Technology Muralidharan Govindarajan, Oak Ridge National Laboratory

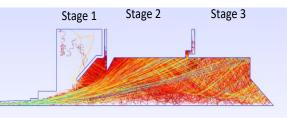
Team – Industry, University and a National Lab

Jagadishwar Sirigiri

– Pl


- Top level system design, physics design and electrical design of gun, cavity and collector, experiments
- Tomoya Nakatsugawa
 - Project Management, engineering and experimental setup design
- Anshul Chandel Mechanical modeling and optimization
- Mudit Pasagadagula RF component design
- Dennis Gautreau, Walter Hrynyk, Ivan Mastovsky – Engineering team (combined 100 years of vacuum tube fabrication expertise)
- Bridge12 US small-business one of only five gyrotron tube manufacturers in the world

- ► MIT
 - Steve Wukitch
 - Co-Pl
 - Additive Manufacturing design of gyrotron collector, experimental setup and experiments
 - Adam Seltzman
 - Optimization of AM design, modeling and testing of prototype parts
- ► ORNL
 - Muralidharan Govindarajan
 - Co-PI
 - Analyze properties of brazed and ebeam welded prototype joints
 - Thermal life-cycle testing of prototype test joints



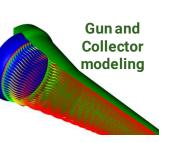
MOTIVATION AND GOALS

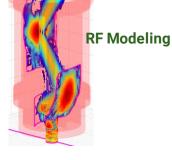
- 1 MW, 250 GHz Gyrotron with high (>65 %) efficiency will support ECRH and ECCD in a burning plasma machine
- High Frequency (>250 GHz) key for compact commercial fusion reactors
- High Efficiency key for reducing input power (drive up Q) and reduce recirculating power in the plant
- Additive Manufacturing reduce manufacturing costs and time cycle
- Advanced Materials GRCop-84 to reduce system size, cost and increase reliability and lifetime
- Advanced Physics Multi-stage depressed collector for energy recovery

100 kW class gyrotron with multi-stage depressed collector

- Electron Cyclotron Resonance Heating (ECRH) – necessary for heating the fuel
 - Typical plant may required 40-80 MW of ECRH power
- Electron Cyclotron Current Drive (ECCD)
 - Control instabilities like NTM and extend confinement time
- ECRH assisted startup
 - Reduce DC power required for plasma startup
 - Important for high field machines

Spent beam trajectories in a multi-stage depressed collector


Tasks, Milestones, Risks and Outcomes


Tasks

- Physics and engineering design of 1 MW, 250 GHz gyrotron for CW operation
- Collector design optimization for additive manufacturing (AM) using GRCop-84
- Thermal lifecycle test of prototype joints for AM components
- Fabrication
- Testing at 1 ms pulse operation

Milestones

- Collector design that is manufacturable with SOA AM
- Thermal analysis to demonstrate operation at 2 X power densities in the collector than SOA

AM RF Parts

HyperVapotron cooling

Risks

- Physics Mode competition in the gyrotron
- Total Efficiency >65 % is 15 % higher than SOA
- Mechanical Fabrication Integration of AM and conventionally fabricated components
- Outcomes
 - Verified physics and engineering design for a highly efficient and robust source for a ECRH and ECCD system
 - Essential technology for a commercial fusion plant
 - Assuming 80 MW ECRH for a plant the proposed system will save
 - 37 MW of prime power
 - ~10 MW of power for cooling

T2M Plans

- Techno-economic metrics
 - Goal 2 \$/W for 1 MW class gyrotron system for burning plasma machines
 - 10 year operating lifetime
 - For a typical ECRH system when compared to SOA reduce
 - 37 MW of prime power
 - ~10 MW of power for cooling

- Test and Deployment
 - SPARC and DEMO type high field tokamaks requiring >250 GHz ECRH
 - 350 GHz system for EC assisted startup on SPARC
 - Lower frequency systems for replacing currently deployed systems to increase ECRH power
- Commercialization plans
 - Commercial fusion plants
 - Investigating portable MW class millimeter wave gyrotrons for a different commercial application
 - Goal to develop a demonstrator in 2 years
 - Potential annual market for tens of units

