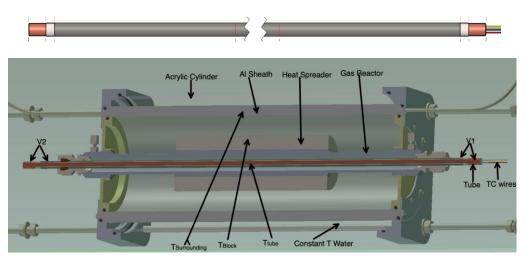


ENERGY RESEARCH CENTER LLC

Brillouin's LENR Reactor and System Identification A Worked Example

ARPA-E Workshop on Low-Energy Nuclear Reactions

Francis Tanzella October 21–22, 2021 Energy Research Center LLC



UP

F. Tanzella et al. / Journal of Condensed Matter Nuclear Science 33 (2020) 33–45


Brillouin's Reactor/Heat Flow Calorimeter

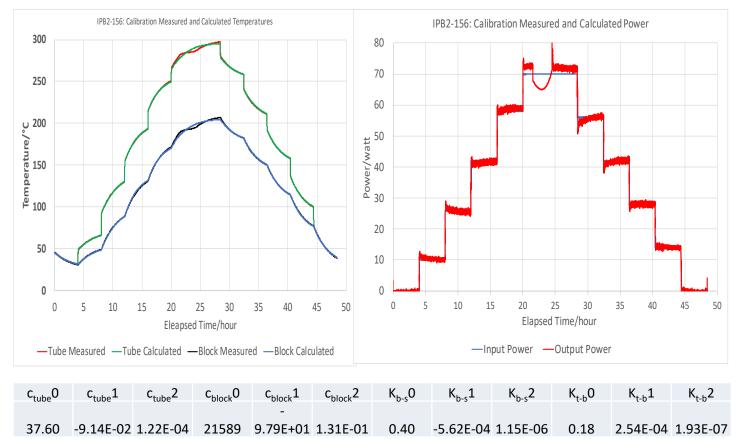
- Ni-H₂ with high V, high I, fast-rise-time pulses across Ni/dielectric/Cu tube
- > Plasma sprayed on alumina substrate
- V & I measured by calib'd oscilloscope
- T_{tube} inside coated tube 200-600°C
- Tube sheath with static 3 10 atm H₂ inside steel block
- T_{block} sensor in steel block
- Ceramic insulation outside of block
- Constant T H₂O cooled AI shell with T_{surrounding} sensor
- Constant low duty-cycle pulse power
- >Thermocouples, current shunt, and oscilloscope calibrated
- Dielectric from contract synthesis group, metals from Oerlikon Metco
- Control: Using automated sequence with low voltage, wider low repetition rate pulses (LVP)
 - >Seven-hour steps including no power
 - >Adjust repetition rate to control at different pulse powers
- Stimulation: Using automated sequence and high-voltage, narrow pulses (HVP)
- Measure and record pulse generator, and actual pulse powers, all temperatures, H₂O flow rates, and pressures
- Compare calculated output power with high-voltage versus low-voltage pulses
 - > Plot both input and output power

Model used for Brillouin's System Identification Calorimetry

Tsurrounding

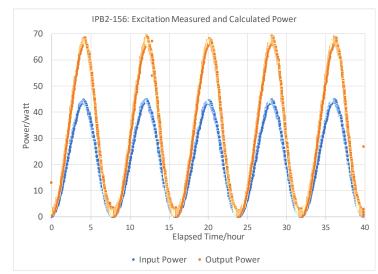
- Each parameter can be third order in T
- All coefficients are found by fitting to one LVP calibration data set 2)
- 3) Coefficients determine what percentage of input power is influencing reactor tube
- Output power is calculated by applying those coefficients to temperature outputs measured with 4) HVP stimulation using appropriate time derivative equations.

e.g. $dT_{tube}/dt = (1/C_{tube})(P_{tube} - k_{t-b}(T_{tube} - T_{block}) \& P_{stored} = C_{tube}(dT_{tube}/dt) + C_{block}(dT_{block}/dt)$


- Coefficient of performance (COP) = calculated power divided by input power influencing tube 1)
- This requires more than 100 hours of calibration and up to 40 hours of excitation, but allows 2) testing of 12 parameter variations; Much faster than the steady-state method.

Berlinguette et al, "Revisiting the cold case of cold fusion", Nature Perspective, https://doi.org/10.1038/s41586-019-1256-6

B. P. MacLeod, D. K. Fork, et al, "Calorimetry under non-ideal conditions using system identification", Journal of Thermal Analysis and Calorimetry, https://doi.org/10.1007/s10973-019-08271-z (2019)


Brillouin's IPB Reactor: Heat Flow Results

Measured and Calculated Power and Temperature during Calibration

4

Brillouin's IPB Reactor: Heat Flow Results

- Overall thermal gain = 1.3; 3 hours around max = ~1.6; Peak P_{excess} = 25W
- Performed many times in Brillouin lab across >20 tubes and 4 reactors
- Tube #72 showed thermal gain of 1.23 at Brillouin lab and 1.15 at SRI in 4 reactors
- No nuclear diagnostics performed
- 19 recent SI results shown below
- Enthalpy of CuO and NiO reduction → ~70kJ, assuming all Cu and Ni are oxidized much less than ~700kJ E_{excess}
- Probably less than 10% of Ni and Cu are oxidized

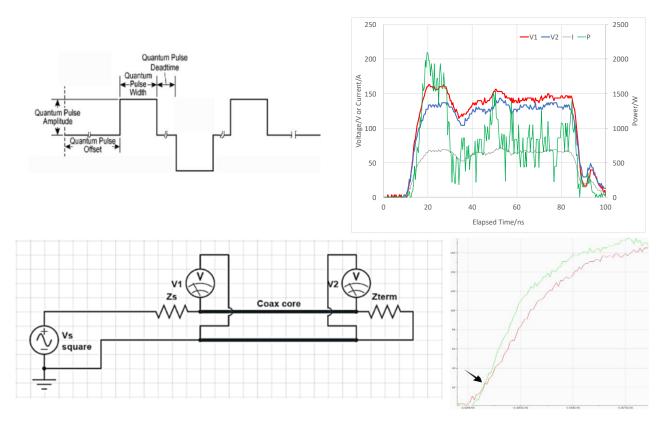
Reactor	1	1	1	1	1	1	2	2	2	
Tube	182	187	204	213	223	217	206	220	221	
Date	3/30/20	5/19/20	9/17/20	10/8/20	11/2/20	11/19/20	9/23/20	12/3/20	4/6/21	
SI CoP	1	0.8	0.9	1.01	0.8	0.8	1.3	1.1	0.9	
Reactor	3	3	4	4	4	4	4	4	4	4
Tube	222	216	72	214	215	233	215	241	224	27
Date	10/29/20	12/23/20	7/23/20	11/19/20	12/2/20	12/18/20	2/10/21	5/26/21	6/21/21	9/17,
SI CoP	1	0.9	1.4	1.4	1.4	1.5	1.4	1.3	1.3	1.3

Assessment of Needs

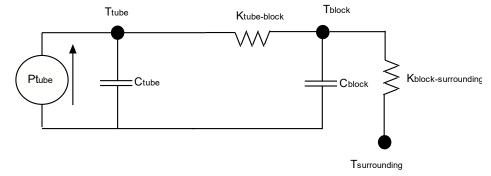
- The following improvements would make the Brillouin experiments more believable
 - A better sealed reactor for 1 ppm He sensitivity and H_2 leak tightness.
 - A 10x more sensitive prompt gamma detection system
 - Better gamma shielding to lower the background by an order of magnitude.
 - Better coating processes to form 10x smoother, >90% dense coating
 - Higher impedance system to use COTS equipment (50, 75 ohm, etc.)
 - An order of magnitude better EMI shielding for reliable data collection.
 - Complete envelope calorimetry, including electronics to yield 96-99% heat recovery
 - 100% wall power measurement downstream
 - >95% heat-flow and mass-flow heat recovery in the calorimeter

The Brillouin Crew

Thank You



Energy Research Center LLC


Francis Tanzella, Ph.D. Principal Scientist consulting@tanzella.name

Brillouin's IPB Reactor Cores Stimulation and Measurement

System Identification^{1,2,3}

$$dT_{tube}/dt = (1/C_{tube})(P_{tube} - k_{t-b}(T_{tube} - T_{block}))$$

 $dT_{block}/dt = (1/C_{block})(k_{tube-block}(T_{tube} - T_{block}) - k_{block-surrounding}(T_{block} - T_{surrounding}))$

P_{in} = P_{tube} (pulse, DC or internal heater)

$$P_{out} = k_{block-surrounding}(T_{block} - T_{surrounding})$$

 $P_{stored} = C_{tube}(dT_{tube}/dt) + C_{block}(dT_{block}/dt)$

Compare measured and calculated $T_{tube}(t)$, $T_{block}(t)$, respectively & solve for the k's and c's

- [1] Berlinguette et al, "Revisiting the cold case of cold fusion", Nature Perspective, https://doi.org/10.1038/s41586-019-1256-6
- [2]MacLeod, B. P. et al. High-temperature high-pressure calorimeter for studying gram-scale heterogeneous chemical reactions. *Rev. Sci. Instrum.* **88**, 084101 (2017).
- [3] B. P. MacLeod, D. K. Fork, et al, "Calorimetry under non-ideal conditions using system identification", Journal of Thermal Analysis and Calorimetry, https://doi.org/10.1007/s10973-019-08271-z (2019)

Estimates of Thermal Conductivity and Heat Capacitance Coefficients from 1st **Principles**

Path 1:

Inner Block Outer Circumferential A = $3.14 \times 0.05m \times 0.15m = 0.024 m^2$. Outer Block Inner Circumferential A = $3.14 \times 0.089m \times 0.15m = 0.042 m^2$. Average area = $0.033 m^2$. Distance = 0.019 m

```
Path2:
```

```
Inner Block Axial Face A = 3.14 \times (0.025m)^2 - 3.14 \times (0.0125m)^2 = 0.0015m^2
Endcap Axial Block Face A = 3.14 \times (0.0445m)^2 - 3.14 \times (0.0125m)^2 = 0.0057m^2
```

```
Average area = 0.0036 m<sup>2</sup>, Distance = 0.064 m
```

```
Path 3:

Reactor Outer Circumferential A = 3.14 \times 0.019m \times 0.127m = 0.0076 m^2.

Outer Block Circumferential A = 3.14 \times 0.089m \times 0.127m = 0.035 m^2.

Average area = 0.022 m^2. Distance = 0.07 m
```

Path 4:

```
Reactor Cross Section area = 3.14 * (0.0095m)^2 - 3.14 * (0.00635m)^2 = 0.00015m^2
```

```
Reactor Cross Section area = 0.00015 m<sup>2.,</sup> Distance = 0.14 m
```

Calculating the conductance from above using **rock wool's** room temperature

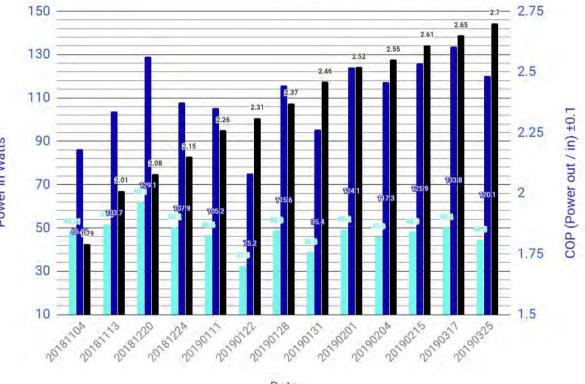
```
value of 0.038 W/(m*K), we get:
```

Path 1: 0.038 W/(m*K) * 0.033 m²/ 0.019 m = 0.066 W/K \rightarrow 30 K/W. Path 2: 0.038 W/(m*K) * 0.0036 m²/ 0.064 m = 0.0021 W/K \rightarrow 470 K/W Path 3: 0.038 W/(m*K) * 0.022 m²/ 0.07 m = 0.012 W/K \rightarrow 84 K/W. Path 4: 0.038 W/(m*K) * 0.00015 m²/ 0.14 m = 0.012 W/K \rightarrow 84 K/W This yields a total thermal conductance for inner block to surroundings (K_{ic}) of ~0.081 W/K or ~12 K/W.

Estimates of Thermal Conductivity and Heat Capacitance Coefficients from 1st Principles

- Path 5 is the conductance (K_{tube-block}) through the hydrogen from the radial face of the alumina tube to the inner block, represented by the inner face of the reactor. Path 6 is the axial conductance along the cross section of the alumina tube to the surroundings (K_{tube-surrounding}).
- •

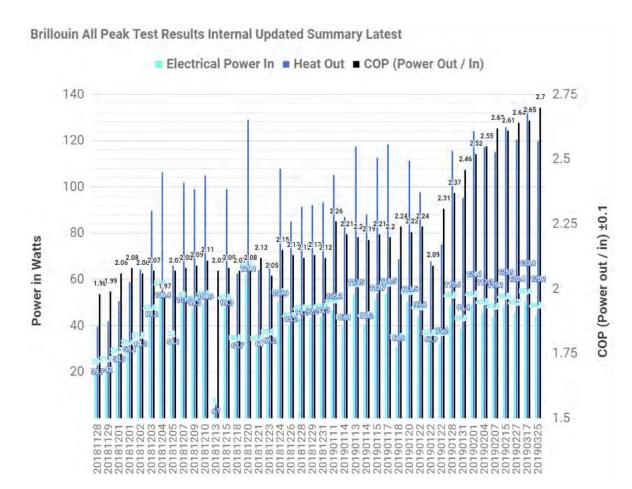
• Following the same logic as above:


- •
- Path 5:
- Reactor's Inner Circumferential A = 3.14 * 0.0127m * 0.15m = 0.0058 m².
- Tube's Outer Circumferential A = 3.14 * 0.0072m * 0.15m = 0.0034 m².
- Average area = 0.0046 m^{2.}
- Distance = 0.005 m
- ٠
- Calculating the conductance from hydrogen's thermal conductivity of ~2.0 W/(m*K) at 125°C and 8 bar, we get (since H2 is not an ideal gas its conductivity will not scale with pressure, so there can be large errors):
- 2.0 W/(m*K) * 0.0046 m²/0.005 m = 1.84 W/K → 0.54 K/W
- Using 1 bar we and 0.23 W/(m*K) we get 0.21 W/K or 4.7 K/W.
- •
- Path 6:
- Tube Cross Section area = 3.14 * (0.0036m)² 3.14 * (0.0016m)² = 0.000033m²
- Tube Cross Section area = 0.000033 m^{2.}
- Distance = 0.14 m

Calculating the conductance from above alumina's thermal conductivity of ~27 W/(m*K) at 175°C, we get: $27 W/(m*K) = 0.000022 m^2/0.11 m = 0.00041 W/K > 457 K/W$

```
27 W/(m*K) * 0.000033 m²/0.14 m = 0.0064 W/K → 157 K/W
```

HIGHLIGHTS OF ACTUAL TEST RESULTS



Date

14

