
Investigating the cost-effective design and operation of a negative
emission power plant concept that combines flue gas CO2 capture with a
lime-based direct air capture (DAC) process in a way that enables power
plant flexibility.
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The Concept
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‣ At low electricity 
prices, power plant 
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Design, analysis and optimization methodology
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Steady-state
simulations 
(Carbon 8)

Surrogate model 
development

(Carbon8)

Capital and operating 
cost estimation

(Carbon8 + DAC)

Design and 
operations 

optimization
(Carbon8 +DAC)

Various  market s cenarios , e.g.
- Hourly electricity prices
- CO2 prices

• Optimized process 
design and operation

• Process NPV

Key outputs

ALAMO reference: https://www.minlp.com/alamo



Design optimization approach accounts for temporal variability in grid 
electricity prices and its impact on plant operations
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Time-domain 
reduction via 
clustering1

Representation of grid dynamics in design optimization model
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Constraints
‣Mass, energy balances and process connectivity (including surrogate 

models)
‣ Intertemporal operational constraints
‣ CO2 accounting at hourly and annual time-scales

Integrated Design and Operations Optimization
Surrogate model development (Membrane example)

1. Mallapragada, D.S., Sepulveda, N.A. and Jenkins, J.D., 2020. Long-run system value of battery energy storage in future grids with 
increasing wind and solar generation. Applied Energy, 275, p.115390.



Extent of recycling of low-CO2 streams from membrane + distillation process is a key 
design variable, involving OPEX-CAPEX and negative emissions trade-offs
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Parameter Full Loading Case with 100% Recycle1 Full Loading Case without Recycle1

Net Power (MW) 544 663
Net CO2 Emissions (tonne/hr) -473 -141

Relative CAPEX 1.4 1.0
Fresh CaCO3 (tonne/hr) 1242 664

Calciner Solids Feed (tonne/hr) 2299 1227
Emissions Intensity (tCO2/MWh) -0.869 -0.229

CO2 Recovery 98% 84%

All results  in this  s lide are preliminary and 
subject to change

1 The results are based on 20/80 split fraction for the flue gas (i.e., 20% of the flue
goes to the calciner) and 50/50 split fraction for the solids (i.e. 50% of the solids goes
to the carbonator).
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CO2 capture system operates at part loading of power plant due to availability 
of non-power carbon source (CaCO3)
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Effect of Power Plant Loading and Limestone Feed 
on Capture System Power Requirements1

Key variables to be optimized for part load 
operations
- Limestone fresh feed
- Flue gas split fraction (α)
- Solids recycle fraction (β)

1 The results are based on the case without any recycles, with 20/80 split fraction for
the flue gas (i.e., 20% of the flue goes to the calciner) and 50/50 split fraction for the
solids (i.e. 50% of the solids goes to the carbonator).

All results  in this  s lide are preliminary and 
subject to change



Project Status

‣ We have developed the three key modeling components
– Steady state simulation model
– Costing module
– Preliminary design optimization model (using surrogate models)

‣ Next step: evaluate optimization model for CO2, electricity price scenarios
– Determine the design and dispatch of the system
– Explore NPV outcomes

‣ Preliminary results indicate that positive NPV designs are achievable, with higher 
profitability in higher carbon price scenarios
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Phase 2 Planning

‣ Build and operate ≈10k t CO2/y lime DAC air contactor to raise DAC to TRL 7
‣ Advance the integrated power concept modeling and design
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Bench-Scale Lime-Based DAC Carbonation Data from Phase 1

NGCC

Calciner, 
Carbonator, and 
Heat Recovery 

System

Lime-based 
DAC

CO₂
Separation 

System

Commercia lly 
proven

Commercia lly 
proven except 

for 
integration

Commercia lly 
unproven300

350

400

450

500

550

600

650

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

CO
2 

PP
M

Pe
rc

en
ta

ge
 o

fL
im

e 
 C

on
ve

rt
ed

 to
 C

aC
O

3

Lime Carbonation CO2 PPM



Phase 2 Planning

‣ Evaluating the potential of building a small kiln with CCS (50 t CaO/ day) to make the 
facility a commercially viable, carbon negative DAC plant. 

‣ To advance the integrated power concept in parallel, we would build on Phase I by:
– Characterizing dynamic operation of individual unit operations
– Incorporating insights into design optimization, improving granularity of cost modeling 
– Assessing the region specific market potential for the proposed FLECCS concept 
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The team will be:
‣ 8 Rivers (Lead)
‣ MIT (leading systems analysis)
‣ EPC (leading FEED and construction)
‣ Site host

EPCs and 2 sites in Southern US already under consideration



Summary

‣ Our process integrates a calcium looping CO2
capture system with a lime based direct air 
capture system. The overall process is carbon 
negative and requires no power plant 
modification.

‣ The dispatchable, flexible power plant addresses 
two key challenges for a future power system: 
Load balancing and firm capacity.

‣ We achieve high utilization of key CCS equipment 
even with low utilization of the power plant. 
However, it requires a carbon incentive to be 
economical.
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