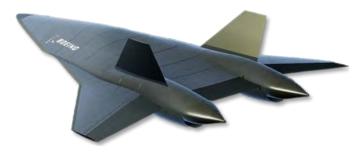
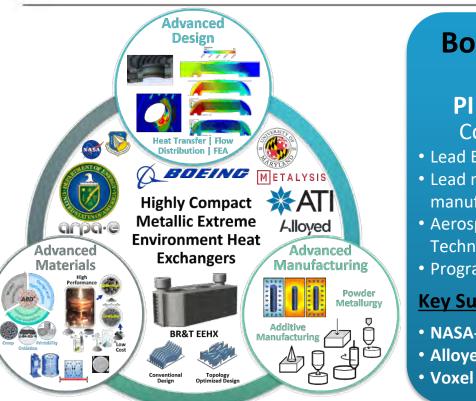

Highly Compact Metallic Heat Exchangers for Extreme Environments (EEHX)


Dr. Ali Yousefiani Boeing Research & Technology

Project Vision


Develop topologically optimized heat exchangers, advanced materials, and manufacturing processes for use in long-life sCO₂ Brayton power cycles, which can be employed in Terrestrial Power Generation and in high efficiency Integrated Power & Thermal Management Systems (IPTMS) for high speed aircraft

Brief Project Overview

Boeing Research & Technology PI: Dr. Ali Yousefiani Co-PI: Dr. Arun Muley • Lead EEHX design & development

Lead materials and hybrid manufacturing process development
Aerospace Tech-to-Market and Techno-economic Analysis
Program management

Key Subs/Partners

NASA-GRC (Dr. Tim Smith)
Alloyed (Dr. David Crudden)
Voxel (Mr. Daniel Herrington)

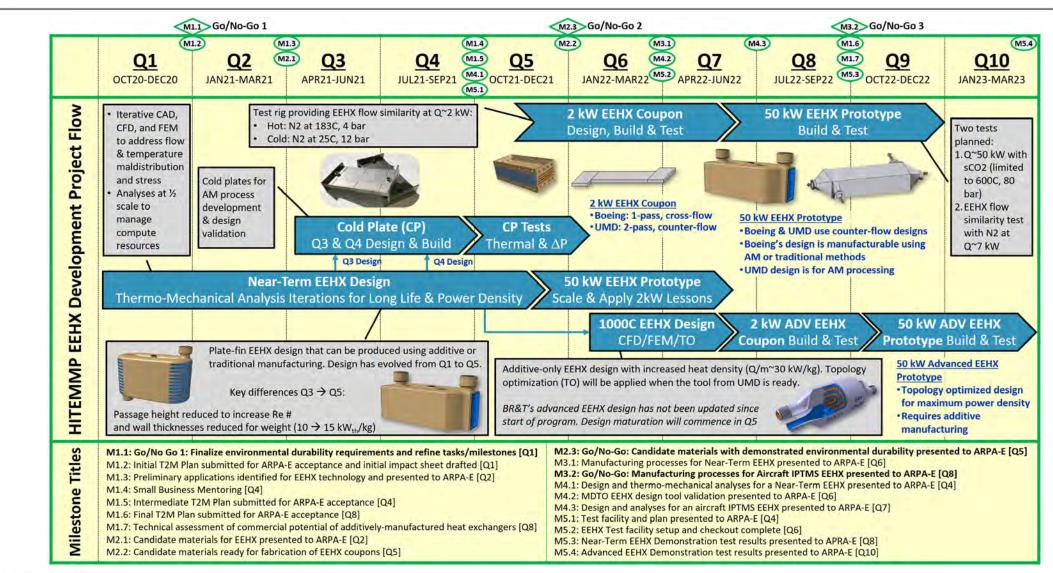
ATI Specialty Materials (Dr. John Foltz)

- Alloy powder production
- Materials characterization
- Additive Manufacturing

University of Maryland (Professor Hugh Bruck)

- Heat exchanger topology optimization
- EEHX testing
- Power generation Tech-to-Market

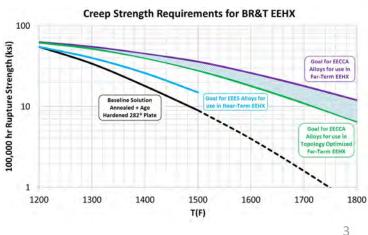
Air Force Research Laboratory (Dr. Eric Payton)


- Alloy selection
- Alloy production
- Materials characterization

Metalysis (Dr. Ian Mellor)
Non-traditional alloy powder production
Tech-to-Market for non-traditional powder production
Materials characterization

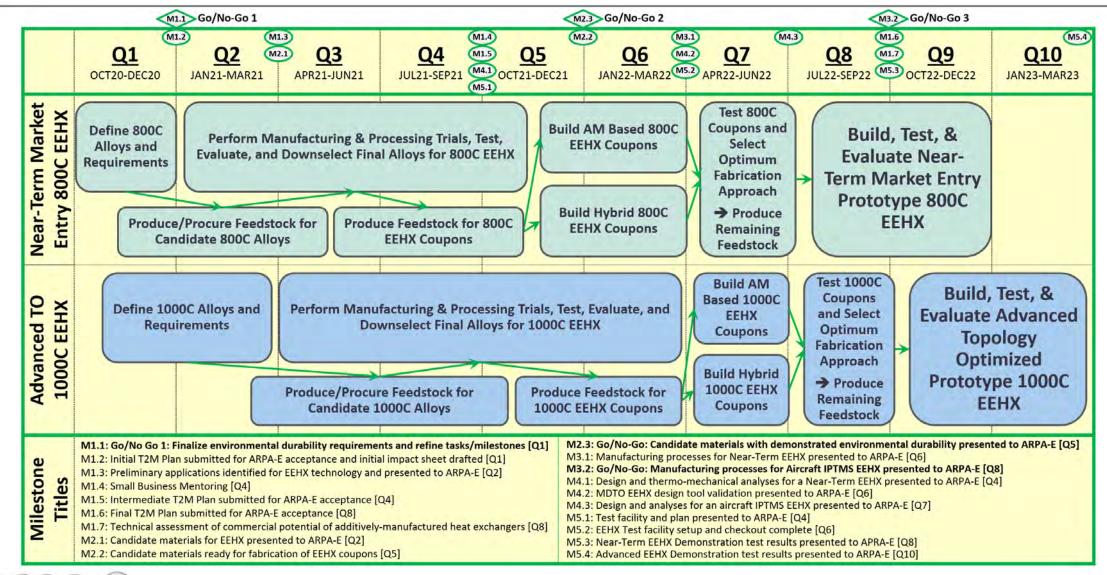
- Metallic materials solutions capable of continuous operation at temperatures up to 1000°C (1832°F) and pressures above 80 bar (1160 psi) for tens of thousands of hours
- Design and fabricate topologically optimized heat exchangers for use in long-life sCO₂ Brayton power cycles, which can be employed in Terrestrial Power Generation and in high efficiency Integrated Power & Thermal Management Systems for high speed aircraft


Progress Against Tasks – Timetable

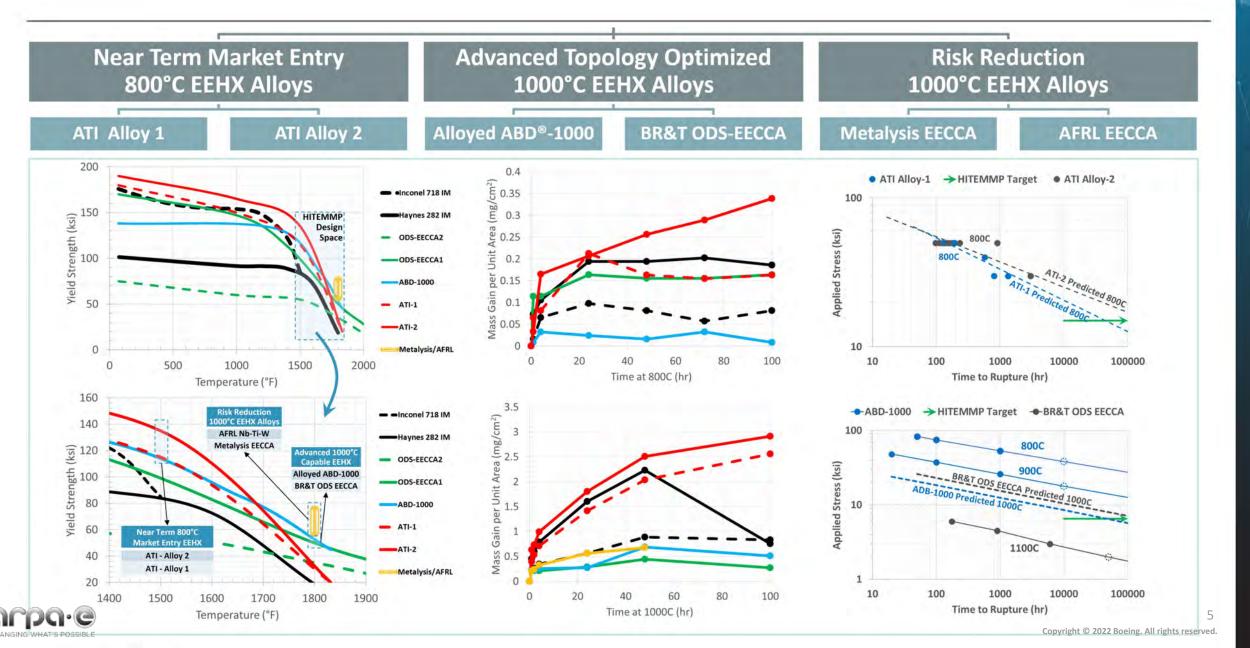


Material Selection Goals/Requirements

	Property	Goal	Test Method
	Room Temperature Tensile Properties	YS > 100 ksi, UTS > 150 ksi, %El > 10 %	ASTM E8
	800°C Tensile Properties	YS > 80 ksi, UTS > 100 ksi, %El > 10 %	ASTM E21
Alloys	100,000 hour Creep Rupture Strength at 800°C	Demonstrated to be greater than 15 ksi, based on extrapolation of data from 10/100/1,000/4,000 hour creep rupture tests	ASTM E139
A	Thermal Conductivity at 800°C	> 170 Btu·in/h·ft ² ·°F	ASTM E1225
800°C	Linear Coefficient of Thermal Expansion (RT - 800°C)	< 8.5 (in/in.°F) x 10 ⁻⁶	ASTM E228
8	SCO ₂ Environmental Resistance	No Failure after 10,000 hr exposure	BR&T specialized simulated service testing at 800°C
	Thermal Stability	RT tensile properties after 10,000 hr exposure > 80% unexposed values	BR&T specialized simulated service testing at 800°C
	Property	Goal	Test Method
	Property Room Temperature Tensile Properties	Goal YS > 100 ksi, UTS > 150 ksi, %El > 10 %	Test Method ASTM E8
S			
Alloys	Room Temperature Tensile Properties	YS > 100 ksi, UTS > 150 ksi, %El > 10 %	ASTM E8
Alloy	Room Temperature Tensile Properties 1000°C Tensile Properties 100,000 hour Creep Rupture Strength	YS > 100 ksi, UTS > 150 ksi, %El > 10 % YS > 35 ksi, UTS > 60 ksi, %El > 10 % Demonstrated to be greater than 6.5 ksi, based on extrapolation	ASTM E8 ASTM E21
Alloy	Room Temperature Tensile Properties 1000°C Tensile Properties 100,000 hour Creep Rupture Strength at 1000°C	YS > 100 ksi, UTS > 150 ksi, %El > 10 % YS > 35 ksi, UTS > 60 ksi, %El > 10 % Demonstrated to be greater than 6.5 ksi, based on extrapolation of data from 10/100/1,000/4,000 hour creep rupture tests	ASTM E8 ASTM E21 ASTM E139
1000°C Alloys	Room Temperature Tensile Properties 1000°C Tensile Properties 100,000 hour Creep Rupture Strength at 1000°C Thermal Conductivity at 1000°C Linear Coefficient of Thermal	YS > 100 ksi, UTS > 150 ksi, %El > 10 % YS > 35 ksi, UTS > 60 ksi, %El > 10 % Demonstrated to be greater than 6.5 ksi, based on extrapolation of data from 10/100/1,000/4,000 hour creep rupture tests > 190 Btu·in/h·ft ^{2.} °F	ASTM E8 ASTM E21 ASTM E139 ASTM E1225



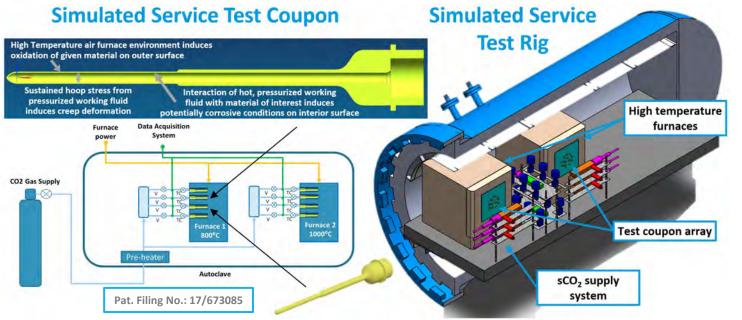
Key Governing EEHX Failure Mechanisms: Creep Deformation/Rupture, Oxidation, Environmentally Assisted Cracking, Microstructural Degradation, and Thermal Stability



Material Selection & Manufacturing Timetable

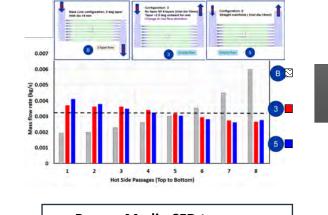
Material Selections

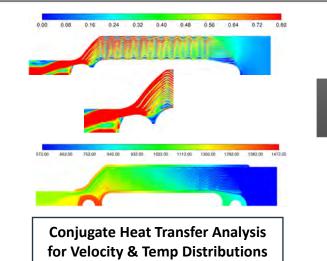
Manufacturing Process Development Updates

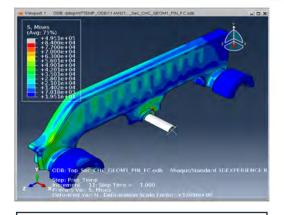


Fabrication of Protype Heat Exchangers

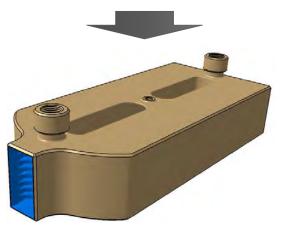
Boeing's Simulated Service and Material Compatibility Test Rig


- Test bed capable of high temperature (currently up to 1100°C), long-term exposure of multiple alloys and/or processing conditions under predetermined sustained stresses
- A dynamic system, simultaneously exposing test specimens to high temperature corrosion (oxidation), creep, and environmentally assisted cracking in a given working fluid (currently SCO₂)
- Test sample geometry allows replication of thermomechanical loading profile and environmental exposure aspect of Boeing EEHX designs
- Test rig will also be utilized for evaluation of static high temperature corrosion (oxidation) in SCO₂ of multiple alloys and/or processing conditions



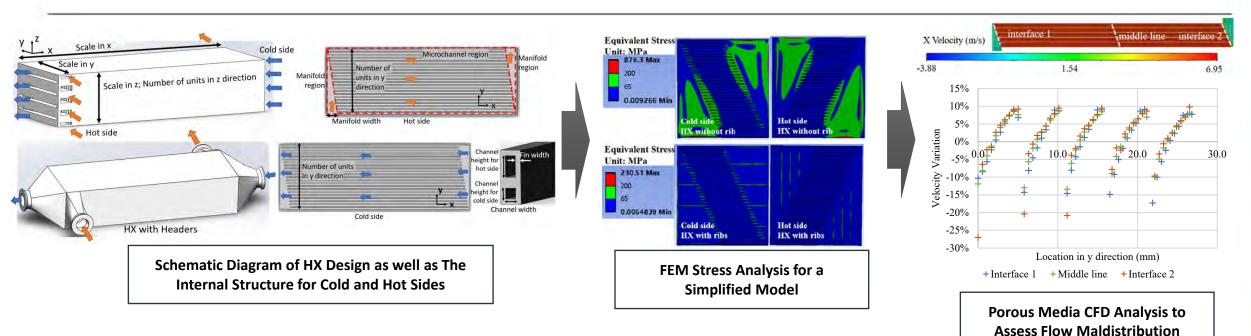

Boeing Near-Term EEHX Design and Analysis

Porous Media CFD to assess Manifold Flow Maldistribution



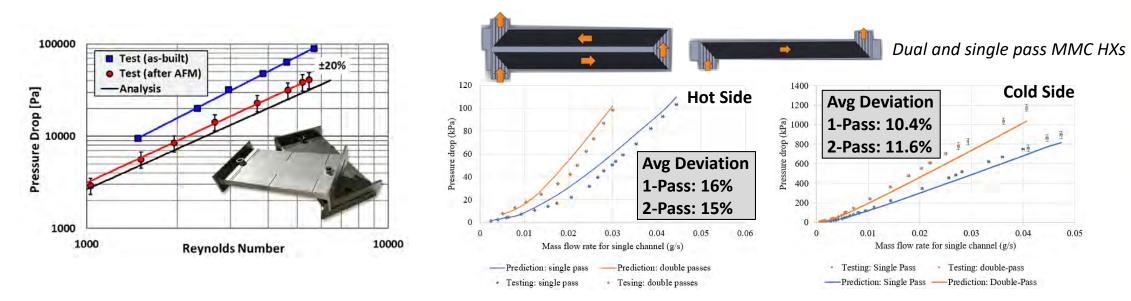
FEM Structural Analysis for Stress Distributions

- Boeing's EEHX design is manufacturable using traditional or additive processes
 - Achieves very low dP/P at expense of heat density
- Design and Analysis approach
 - Initial design that balances performance and manufacturability
 - Porous media CFD analysis to optimize manifold flow distribution
 - Conjugate heat transfer to establish internal flow and temperature distributions
 - FEM analysis to evaluate stress levels and inform design


HX Parameters	50kW
nx Parameters	Design
Capacity [kW]	51.0
Fluid	sCO2
Pressure drop ratio, both sides	<0.05%
T_hot in [C], P_hot in [bar]	800, 80
T_cold in [C], P_cold in [bar]	300, 250
Mass flow rate [kg/s]	0.104
Effectiveness	0.81
Number of passes	1
Gravimetric heat density	15
[kW/kg]	15
Volumetric heat density [kW/L]	53

50 kW EEHX Design

UMD Manifold Microchannel (MMC)_ EEHX Design & Analysis


- UMD's EEHX is manufacturable using the DMLS technique
- Design and analysis approach
 - Correlation-based prediction model to develop HX design
 - FEM analysis to evaluate mechanical performance
 - Porous media CFD to evaluate flow distribution in the microchannel region

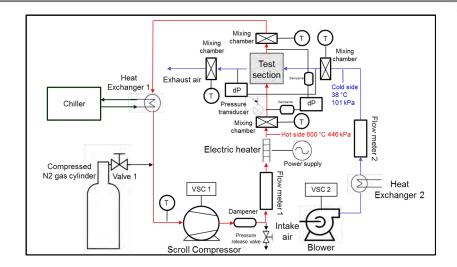
HX Parameters	50kW Design
Capacity [kW]	50.6
Fluid	sCO2
Pressure drop ratio, both sides	1.2%
T_hot in [C], P_hot in [bar]	800, 80
T_cold in [C], P_cold in [bar]	300, 250
Mass flow rate [kg/s]	0.1
Effectiveness	0.8
Number of passes	2
Gravimetric heat density [kW/kg]	49
Volumetric heat density [kW/L]	284

EEHX Coupon Testing

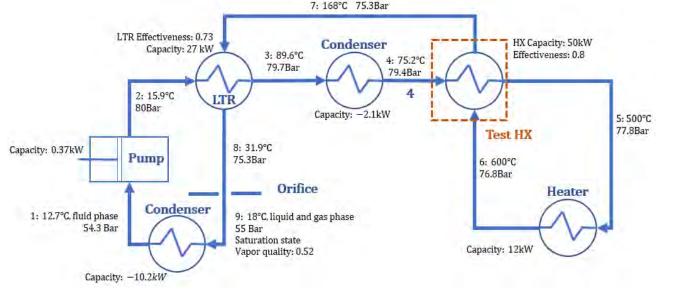
- EEHX coupons subjected to isothermal pressure drop testing using air
 - Average deviation between test and model results within 20%

Preparations for thermal testing at UMD are underway

- 2 kW EEHX units to be tested using existing low temperature rig (air-N2)
- 50 kW EEHX prototypes to be tested using new closed-loop CO2 rig


UMD Heat Exchanger Test Rigs

Low Temperature Air-N2 Rig


Testing of 2 kW EEHX coupons

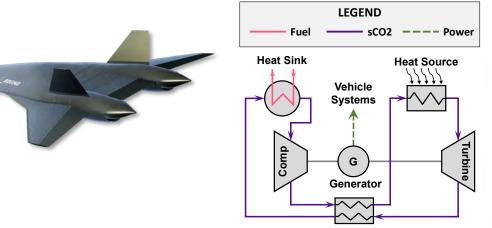
High Temperature sCO2 Test Rig

- Closed-loop 50 kW test rig using sCO2
 - Operation limited to 80 bar and 600C
- Estimated completion in May 2022

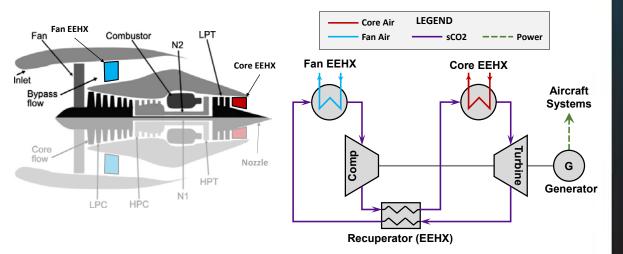
- Hot-side Temp: 600°C
- Hot-side Pressure: 76 Bar
- Cold-side Temp: 75°C
- Cold-side Pressure: 80 Bar
- CO2 mass flow: 0.1 kg/s

Technology-to-Market Updates: Aerospace

Integrated Power & Thermal Management System (IPTMS) for High-Mach Vehicles

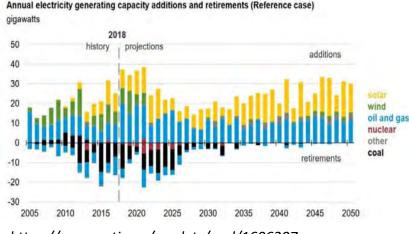

- Improve cruise SFC by 10-15%
- Follow-ons & Partnerships
 - NASA hypersonic civil aircraft study (executing)
 - DOD IPTMS ground demonstration (in negotiations)
- Patents & Publications
 - US20200407072A1 (IPTMS patent app)
 - AIAA-2021-3531 (2021 AIAA Propulsion & Energy Forum)

Waste Heat Recovery (WHR) from Aircraft Engines


- Improve SFC by up to 4.5%
- Follow-ons & Partnerships
 - NASA: Study ammonia as aviation fuel, WHR using sCO2 Brayton cycle (starting 3Q22)
 - Partners: UCF, GA Tech, Purdue, GE
- Patents & Publications

HANGING WHAT'S POSSIBI

- AIAA-2022-1407 (2022 AIAA SciTech Forum)
- ASME-GT2022-84359 (2022 ASME Turbo Expo)


Recuperator

Technology-to-Market Updates: Terrestrial

- Challenges
 - CO2 CAPEX is high
 - LCOE similar to NGCC plants
- Advantages
 - Higher plant efficiency
 - Dry-cooling for arid climates
- Projected Market through 2050
 - 2-3 GW of new sCO2 capacity
 - Assumes 20-30% of Natural Gas Combined Cycle (NGCC) plants replaced by sCO2
 - \$0.8-\$1.2B HITEMMP HX market
 - HX estimated at ~19% of total equipment costs

https://www.osti.gov/servlets/purl/1606297

Risk Update

ID#	Risk
1	<u>Thermal</u> : HX Flow maldistribution on low pressure side fluid. Additional flow maldistribution possible in HX core or z direction inside the cold side fluid header
2	<u>Mechanical</u> : HX cannot withstand required pressure at desired temperature. Also, excessive temperature gradient in the EEHX core. Steep temperature variation can result in localized hot spots and breach of structural robustness
3	Materials: Lack of environmental durability in novel alloys
4	<u>Manufacturing</u> : Novel alloy printability, machinability, formability, joinability, and capability to meet tight channel tolerances during PECM and surface roughness and wall tolerance requirements during LBPBF AM
5	<u>Adoption (EEHX)</u> : Market value for improved power cycle efficiency stemming from operation at >1000°C (vs. 800°C) may not overcome added cost and complexity associated with balance of plant (BOP) hardware designed for >1000°C service
6	<u>Adoption (EEHX Materials)</u> : Novel alloys will have limited commercial uses and may be prohibitively expensive to produce in low volumes, which could compromise the market value of improved thermodynamic efficiency associated with operating at >1000°C

The materials risk (#3) has been downgraded to "unlikely", based largely on 1000-hour oxidation studies of the candidate EEHX alloys

