

SHOTEAM: Superalloy Heat Exchangers Optimized for Temperature Extremes and Advanced Manufacturability

PI: Timothy Fisher, UCLA

Project Vision

We solve a series of coupled optimization problems involving superalloy heat exchanger materials, manufacturing, cost, heat transfer, and reliability for new highefficiency advanced recuperated power cycles targeting aviation applications

Brief Project Overview

Team member	Location	Role in project
UCLA	Los Angeles, CA	Thermo-mechanical optimization, additive manufacturing
Honeywell Aerospace	Torrance, CA	Heat exchanger design and fabrication, T2M
University of Miami	Miami, FL	Creep and fatigue modeling (early stage)

Context/history of the project

50 kW prototype

Status: design complete, fabrication in progress Highlights: microtubes, power density > 18 kW/kg

2.25 MW full-scale design

Status: design in progress Highlights: microtubes, cost < \$5000 K/kW

Fed. funding:	\$2.52M
Length	36 mo.

Progress Against Tasks – Timetable

WBS	Task/Milestone Title	Start	End	2019		20)20			_ 20	21			20	22		
M1 1	Go/No-Go: Patina tha Tasks	1	1	1	2	3	4	5	6	7	8	9	10	11	12	13	
M2 4	Thormohydraulic Modeling Framework	1	1														
M2.1	Concentual Design Paview (50 kW HY)	2	2														
M2.2	Proliminant Design Review (50 kW HX)	4	5														Comple
M2.3	Go/No Go: Critical Dacian Baylow (50 kW HX)	-	0					1									
M2.4	Concentual Design Review (50 kW HX)	12	12														In proar
M2.5	Proliminary Augmentation Design	12	13														1-5
M2 2	Freiminary Augmentation Design	1 2	1														
M3.2	Sub coole HX Thermal Parformance Evoluation	2	2														Plannec
M4.4		4	0							11							
IV14.1	Demonstration of Oxidation and Thermomechanical Resiliance	4	40														
W14.2	Demonstration of Oxidation and Thermomechanical Resilience	4	12														
IVI4.3	Concentual Exprisedian Presson Flow	8	13														
M5.1	Conceptual Fabrication Process Flow	4	4														
N15.2	Full Fabrication Process Flow	5	5														
IVI 5.3	Gather Requirements for Test Interface from Test Vendor	0 7	8														
M5.4	Intermediate Manufacturing Review	1	1														
M5.5	Finalized Experimental Test Plan	8	11														
M5.6	Go/No-Go: Complete 50 kW HX Fabrication	9	11													_	
M5.7	Complete HX Shipped to the Test Site	11	12														
M5.8	Thermohydraulic Performance Test	12	13														1
M6.1	Preliminary Applications/ IP Landscape	3	3			_											
M6.2	T2M Paths	4	4														
M6.3	Target Candidate Aerospace HX Applications	4	7														
M6.4	Update T2M Plan	8	9														
M6.5	Final T2M plan	10	11														
M6.6	Pursue funding	11	13													_	L
M7.1	Creep test machine upgraded	8	11														
M7.2	Advanced TLP approach developed	8	12														
M7.3	Experimental validation of creep model	9	13														1

Design and Optimization Progress

Proposal design

3mm tubes with cruciform cross-section

Current HX Design

- CDR for 50kW prototype completed and fabrication in progress
- Design for 2.25 MW full-scale HX in progress
 - Main performance and cost metrics achieved

Model Development for Microtube Heat Exchanger

- HX performance model developed based on Volume Average Theory (VAT)
 - Improved correlations developed to estimate the Colburn factor and friction factor
 - CFD used to quantify flow maldistribution effects

- - Sub-scale microtube heat exchanger and test rig fabricated and exercised
 - Internal flow with sCO2, and external flow with air
 - Model predictions and test results agree very well (generally within ±5%)

Heat Exchanger Optimization

- Optimization routine developed based on Particle Swarm Optimization (PSO)
 - >50,000 designs searched
 - Cost-constrained power density optimization demonstrated

Thermomechanical Performance and Oxidation Resistance

Linear creep model in ANSYS

Dislocation-diffusion

- Linear creep model developed in ANSYS
 - Flexible header with U-tubes applied
 - Creep life (MTBF) is equal or greater than 40,000 hours
- Non-linear creep model under development

- Haynes 282 oxidation in hightemperature CO2 is not mechanically detrimental
 - Thermal tests for microtubes completed

Manufacturing Process Sequence (50 kW Prototype)

Core Assembly Outer Assembly F Sequence_HX_assembly_MP4.mp4 Sequence_CORE_assembly_MP4.mp4 Honeywell UCLA

Core Assembly

- Stack Core
- Braze Core
- Heat Treat
- Pressure Test

Outer Assembly

- Weld Shell
- Weld Manifolds

Final Assembly

- Pressure Test
- Name Plate
- Final Inspection

9

Brazing Development for Header Joining

- Brazing development successfully completed
- Alternatives studied (e.g., TLP) brazing remains the safest good choice

Alternative Joining Methods – Transient Liquid-Phase Bonding

Intergranular carbide coarsening in the microtube after joining

Cross section of the TLP joint

Paulonis, D. F., et al. 1972

- Alternative Transient Liquid Phase (TLP) joining method under development
- Brazing tape (interlayer) liquidus is 1060°C
 - More work needed as a primary assembly method

Parts Fabricated by Additive Manufacturing

- Main components fabricated by 3D metal printing
- U-tubes obtained from wrought material

Risk Update

	Risk					
	1. Material incompatibility between metal and fluid components at/near operating conditions					
	2. Material reliability compromised at/near operating conditions					
	3. Modest/no enhancement from topologically optimized inserts within manufacturing constraints					
	4. New header joining methods under development					
	5. Excessive projected cost of					

manufacturing for commercial-scale HX

		Insignificant	Minor	Moderate	Major	Catastrophic	
	Rare	Incignificant	Minor	Mederate	Major	Catastranhis	
	Unlikely		3 4	1 2 5	3		
Likelihooc	Moderate			1 2			project
-	Likely			5	4		X Start of
	Almost Certain						× Now

sCO₂ Brayton Cycle for Hybrid Electric Propulsion

- sCO₂ Brayton cycle for future hybrid electric aircraft
 - High thermal efficiency (47% vs. 29% for conventional aircraft engine)
 - Microtube HX architecture is potentially applicable for all HXs in the system

Updated Cost Function

1. Weiland, N. T., Lance, B. W., & Pidaparti, S. R. (2019, June). In ASME Turbo Expo 2019: Turbomachinery Technical Conference and Exposition. American Society of Mechanical Engineers Digital Collection.

15

Cost Comparison between sCO₂ Cycle and Conventional Engine

- Expense during operation = Fuel cost + CO₂ emission price
- Total cost = Expense during operation + Capital cost + Weight penalty cost

Thank you!

- This program has enabled unique synergies between academia and industry
 - Thermal performance modeling
 - Industry 'spreadsheet' model served as baseline
 - Emerging 'data assimilation' employed by academic team
 - Optimization: academics brought theory, industry brought cost realism
 - Thermomechanical reliability
 - Industry linear creep model served as baseline
 - Nascent theory developed for combined creep fatigue of thin-walled tubes
 - Possibility for insertion into industry practice
- Foregoing progress largely driven by ARPA-E's T2M emphasis

Q&A OCPO® U.S. DEPARTMENT OF ENERGY

https://arpa-e.energy.gov

