

High Intensity Thermal Exchange through Materials and Manufacturing Processes HITEMMP Annual Program Review Meeting - March 29 & 30 – Atlanta, GA

High Temperature, Recuperated sCO₂ Brayton Power System Marc Portnoff, Vahid Vahdat, PhD, Thar Energy, LLC

Project Vision

Sustainable and modular electric power generation that is efficient and cost effective with minimal environmental impact.

Key components:

High Temperature/Pressure Recuperator, Expander and Primary Heater

Team member	Location	Role in project
Thar Energy, LLC	Pittsburgh, PA	Modular Power system design, Component design and fabrication, System integration and testing

Thar has worked, with partners, to move the supercritical carbon dioxide (sCO₂) Brayton Power Cycle from *concept to hardware*.

<u>Recent Past</u> Component Development & Testing Power Cycle Analysis & Testing

2-Stage System Thermal efficiency > 50%

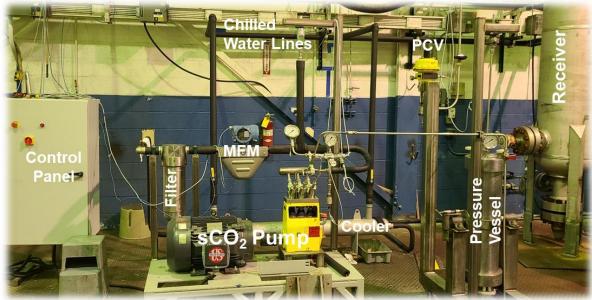
Progress Against Tasks – Timetable

Moving from component design/fabrication to system assembly/testing

sCO₂ POWER CYCLE SYSTEM ANALYSIS

- 1-Stage Cycle & 2-Stage Cycle
- Thermodynamic analysis
- Sensitivity analysis
- Cycle Efficiency vs.
 - > Expander Inlet Temperature
 - Expander Inlet Pressure
 - Pump Isentropic Efficiency
 - Expander Isentropic Efficiency
 - Recuperator Pinch Point
 - System Pressure Drop
- System and Component Design
- Results:
 - > 1 stage EIT 550°C, ~40% efficiency
 - > 2 stage EIT 800°C, ~52% efficiency

Component Design 1-Stage Cycle - Pump


• High Speed sCO₂ Pump

- Down-selected pump concept
- FEA performed
- Design finalized
- Pump fabricated and tested
- Lessons learned incorporated
- Pump being readied for 1-stage power block

sCO₂ Pump Test Stand

- sCO₂ flow rates up to 60 kg/min
- Pressure up to 15,000 psi

- Expander component evaluation
- Pipe coupler/fitting evaluation

Mass flowrate consistently exceeds design specifications.

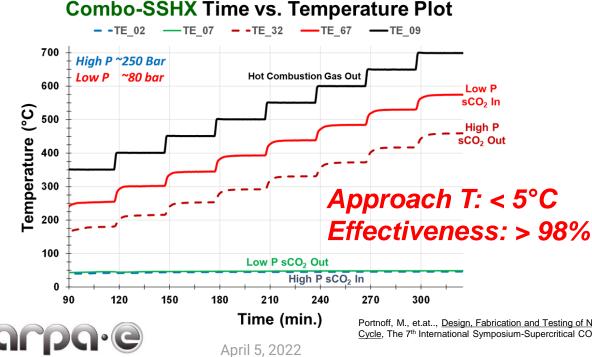
Component Design 1-Stage Cycle - Expander

sCO₂ Expander

- Down-selected 1st expander concept
 - \circ New valve and seal concepts
 - Abandoned concept covid delay
- Down-selected 2nd expander concept -Axial Piston Expander
 - New bearing concept-discont.-covid delay
 - Power end design/tests completed
 - $_{\odot}$ Valve design near completion
 - Valve test rig design near completion
 - $_{\odot}$ Production drawings in process

CHANGING WHAT'S POSSIBLE

Power-End Test Rig


- Simulates acting forces on the pistons
- Cam rotated at 1800 RPM
- Component deformations/wear monitored
- Oil temperature recorded

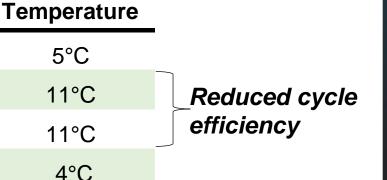
Component Design 1-Stage Cycle - Recuperator

Recuperator (Laser-SSHX, 3D-SSHX, & Combo-SSHX)

- Evaluated for use in 1-Stage System risk reduction
- Additional testing performed
 - Data used to refine design/performance models
 - Thermal analysis perform Laser-SSHX, 3D-SSHX & Combo-SSHX
- FEA performed for 1-stage conditions
 - Passed stress analysis

CHANGING WHAT'S

Approach


Laser-SSHX

347H SS

Portnoff, M., et.at.., Design, Fabrication and Testing of Novel Compact Recuperators for the Supercritical Carbon Dioxide Brayton Power Cycle, The 7th International Symposium-Supercritical CO₂ Power Cycles, February 23, 2022, San Antonio, TX

SSHX

1-Stage

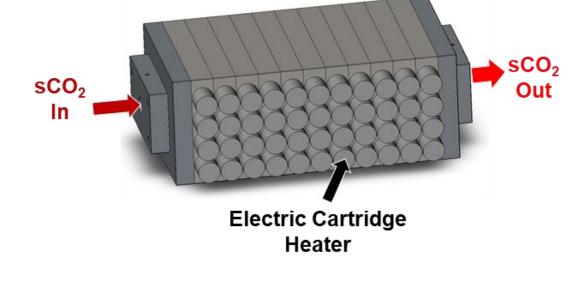
Laser-SSHX

3D-SSHX

Combo

Component Design 1-Stage Cycle – Primary Heater & Water Cooler

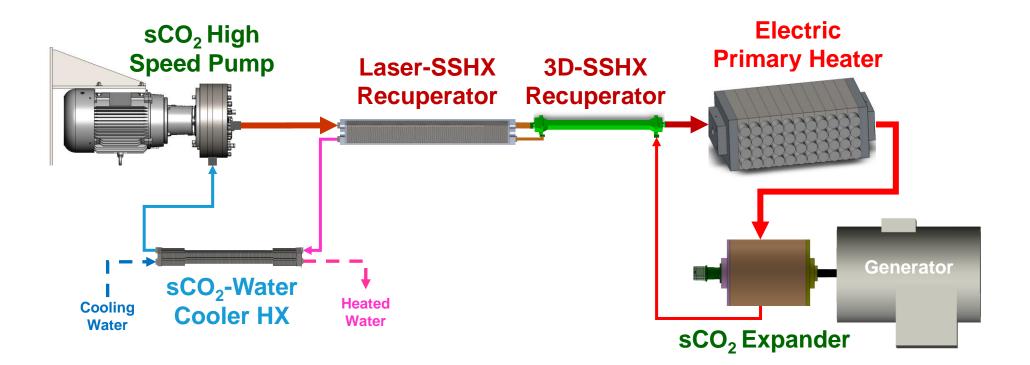
- Primary Heater risk reduction
 - Designed for:
 - 1-Stage system
 - 2-Stage system
 - HX Test Loop Testing 800°C recuperator


Down-selected Electric heater

- Safer more compact design
- $_{\odot}~$ SSHX fabrication method H282
- FEA/CFD Performed
- Design/Fabrication completed
- Fittings fabricated & welded
- Post weld heat treat & hydrotest scheduled

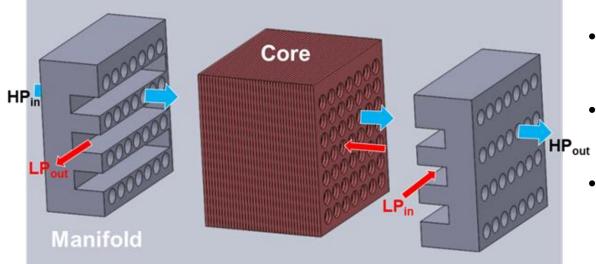
Water Cooler, 1-stage system

- Laser-SSHX design validated
- QA/QC procedures validated
- Risk reduction
 - $\circ~$ Use commercial BPHE



sCO₂ High Temperature Recuperated Brayton Power Cycle System 1 Stage – 25 kWe

Components Designed - P&ID and PFD issued

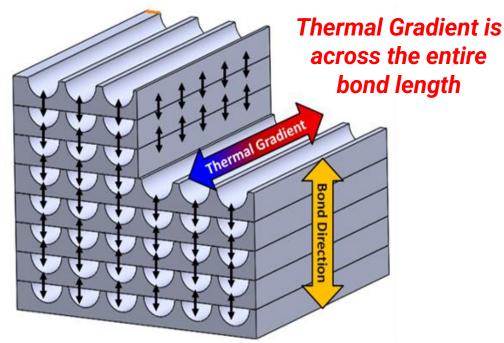

800°C Recuperator Performance Specifications

SSHX Recuperator <u>meets/exceeds</u> STEP criteria			APPA-E project goals	
Criteria	S.T.E.P. State of Art Target	Thar SSHX Recuperator	ARPA-E Category A Target	Thar Project Goals
Thermal Effectiveness	97%	✓	≥ 80%	> 95%
Temperature Limit	577°C	✓	≥ 800°C	> 800°C
Low Pressure	85 bar	✓	≥ 80 bar	≥ 80 bar
High Pressure	255 bar	✓	≥ 250 bar	≥ 300 bar
Pressure Loss	$\Delta P_h < 1.5\%$	✓	$\Delta P_h < 2\%$	∆P _h < 2%
Flessule L055	$\Delta P_{c} < 0.6\%$	✓	$\Delta P_{c} < 2\%$	∆P _c < 2%
Cost	< \$100 / kWt	✓	\$2000/UA	< \$100/UA
	347H Stainless Inconel 625		γ' strengthened Nickel Super-alloys	

Design for use in 2-Stage system

Based on Thar's Stacked Sheet Heat Exchanger (SSHX) Recuperator Concept

- Patterns cut, punched or etched into individual sheets
- Sheets are aligned, stacked and joined (brazed, diffusion bonded)
- Manifolds/headers are added to separate flow streams and ensure uniform flow distribution


Opportunity for cost effective design enhancements

Accommodates digital advances in Subtractive and/or Additive Manufacturing

CASE STUDY Swr

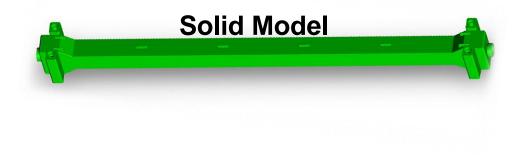
SSHX and **Printed-Circuit HX** Mechanical & Thermal Stress Analysis

Printed-Circuit HX:

The bond between sheets is: <u>perpendicular</u> to the mechanical stresses & <u>parallel</u> to the thermal stresses

The bond between sheets is: <u>parallel</u> to the mechanical stresses & <u>perpendicular</u> to the thermal stresses

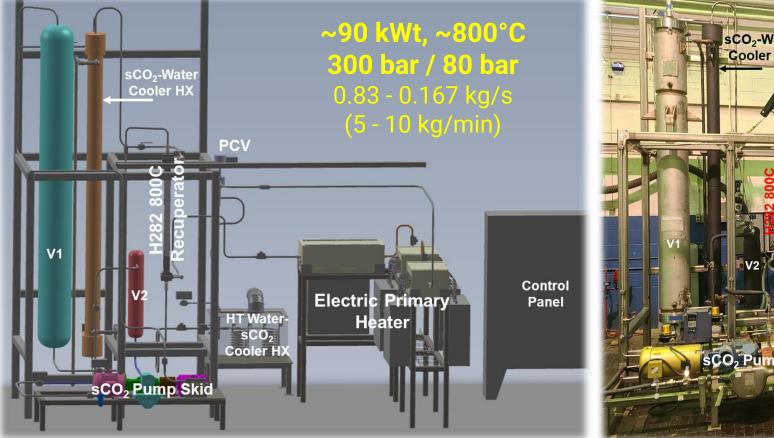
Improves structural integrity and thermal compliance


High Temperature, Recuperated sCO₂ Brayton Power System 12

H282 3D-SSHX Recuperator Update

- H282 3D printed parts validated
- H282 braze process confirmed o 3D printed & Machined parts
- FEA & CFD analysis performed
- H282 3D-SSHX Recuperator design completed
- Fabrication completed
- Fittings fabricated and welded
- Post weld heat treat & hydrotest scheduled

UTS: avg. 90% of base metal
YS: avg. 93% of base metal

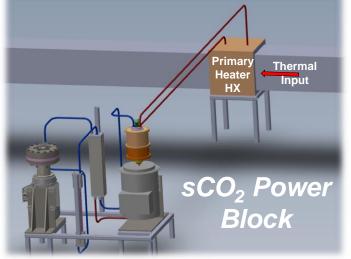


High Temperature HX Test Loop

Design complete and under construction

System Layout

Technology-to-Market Update



You bring the heat! We provide the power!

Business cases recently updated

- Competitor technology benchmarked for performance & cost
- Market size impacted by ease & cost of installation
- 200 kWe 1-stage sCO₂ power block competitive at ~1,500 \$/kWe

Thar Energy's CHP sCO₂ Power Block

• Efficient

- Elec. Efficiency: >40% CHP Efficiency: >70%
- Modular & compact
- Low cost of ownership
- Reduced
 environmental impact

Thank you for your kind attention!

Q & A

Contact Information:

Marc Portnoff Manager, New Technology Thar Energy, LLC 200 RIDC Park West Drive, Bldg. #2 Pittsburgh, PA 15275-1002 <u>marc.portnoff@tharenergyllc.com</u> C 412-251-4615

Work supported by US DOE/ARPA-E under DE-AR0001129

Zak Fang, PhD, Program Director Vivien Lecoustre, PhD & Rakesh Radhakrishnan, PhD

