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Outline

● Introduction
○ Google’s datacenter infrastructure and growths
○ Google’s datacenter network architecture and needs

● Opportunities and challenges for in-rack connection
● Opportunities and challenges for campus networking
● Improving energy efficiency with SDM

○ Energy efficiency vs. spectral efficiency
● Network scaling challenges and optical switching opportunities
● Conclusion
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Powered by a Global Network of Datacenters
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Growth Drivers of Datacenter Connectivity

Machine learning at Google

● Aggregate regular server traffic increased 235x from 2011 to 2021
● New ML use case drives more efficient networking with exponential bandwidth growth

Ref:  “The Datacenter as a Computer”, 3nd edition, Luiz Barroso, et al

Google regular server traffic
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A Hyperscale Datacenter
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Google Datacenter Networks

Distance

Cluster

  Intra-DC 
 (Clusters)

 Intra-Campus 
   (Campus)

 Intra Metro 
POP - POP
 (Metro)

Inter-metro DC - DC; DC - POP
 (Backbone, LH /  Subsea)

< 1km  6-10km ~40-80 km 1000s km
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Four Generations of TPU at Google

TPU v3
420 teraflops, 128 GB HBM

TPU v2
180 teraflops, 64 GB HBM

TPU v2 Pod  - 2017
11.5 petaflops,  4 TB HBM

2D Torus  network (256 chips)

● TPUs provide more computing power and require more efficient networking infrastructure. 

TPU v3 Pod  - 2018
100 petaflops, 32 TB HBM

2D Torus  network (1024 chips)

TPU v4 Pod  - 2021
1 Exaflops, 132 TB HBM

3D Torus  network (4096 chips)

TPU v4
1.1 petaflops, 128 GB HBM
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Heterogeneous Interfaces in a Cluster Fabric

● Pluggable modules provides flexibility, maintainability and ease of operation.
● Copper links are the highest number of connections
● Backward compatibility is important for fabric interconnects
● Campus connections are growing fast and campus networks are growing beyond 2km to 10km 
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Google Interconnect Evolution (Copper)
P

er
 la

ne
 s

pe
ed

 (G
b/

s)

2007

10 Year
40G QSFP+ 

Mod: 10G NRZ
Lane: 4
Optics Power< 2.5W
Cu Reach <=7m 

2010

100G QSFP28 

2014

Mod: 25G NRZ
Lane: 4
Optics Power< 3.5W
Cu Reach <=5m 

10G SFP+ 

Mod: 10G NRZ
Lane: 1

100

2017

400G OSFP

Mod: 50G PAM4
Lane: 8
Optics Power< 15W
Cu Reach <=3m 

25

50

800G OSFP112

Mod: 100G PAM4
Lane: 8
Optics Power< 20W
Cu Reach <=2m

2020

● Pluggables with Optics and Copper Cables
● NRZ for up to 100Gb/s  
● PAM4 for 400Gb/s and 800Gb/s 
● TBD for 1.6Tb/s (PAM4 or PAM6)

Mod: 1.6T PAMn?
Lane: 8
Optics Power< 23W
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200
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Intra-Rack Connections Opportunity and Challenges

● Passive copper provides low cost, low power, dense interconnect within a rack
○ Limited reach (target 1m) at 200Gbps
○ Thicker & bulkier as data rate increases

● Opportunities
○ Active copper cable
○ Active optical cable (enable new architectures and applications)

● Challenges: dirt cheap cost

3m 4m 5m Reach @25Gb/s NRZ2m

800G OSFP* Cu cable
Reach @106Gb/s PAM41m 1.2m 1.5m 2m

Est. Reach @212Gb/s TBD 1m

Reach @53Gb/s PAM41.5m 2m 2.5m 3m
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Google DC Optics Trend
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Campus Connectivity

● Traditionally served by the same 20nm spaced CWDM-4 
optics used for the spine fabrics

● Backward compatibility in the optical layer                                                                                                                                                       12
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Challenge of Chromatic Dispersion

14

● CD-limited reach (with 
CWDM4-EML)

○ 100Gb/s PAM4: ~4km
○ 200Gb/s PAM4: ~1km
○ 400Gb/s PAM4: ~0.25km

● Sophisticated chirp management 
techniques could make 
incremental improvement in 
dispersion-limited reach , but 
face loss-budget challenge.
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● 200Gb/s per lane PAM4 can support ~ 1.5km reach with low-cost CWDM4
○  Good enough for 800G Intra-DC use
○  But challenging to support extended campus reach (<10km) 
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Opportunity for Coherent-Lite Transmission in Campus
● Significant dispersion and link budget challenges as campus links grows beyond 

5km

● More bandwidth-efficient modulation/detection technology
● Dispersion compensation with electronic DSP

Multilevel coding (per dimension)
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Challenges for Coherent-Lite Transmission

● Power consumption for coherent-lite optical modules
○ Need optimized DSP without burden for long haul processing
○ Low V-pi & low loss optical modulator is key

● Backward compatibility with legacy systems
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Modulator Drive

1.6T Coherent
Optics

800G IM-DD
Optics

Legacy 800G 
Spine Switch

New 1.6T 
Aggregation Switch
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Coherent for Telecom and Datacom

Datacenter Telecom

Cost, density and power efficiency is key
● High volume usage, lots of short distance fiber
● Large numbers of transceivers in a densely 

populated chassis

Spectral efficiency is key
● Long haul fiber is scarce and expensive
● Line system and amplifier huts are costly.

Link budget limited
● Unamplified.  External amplifiers add cost, 

power consumption, operational complexity and 
another active element to fail.

OSNR limited
● Cascaded amplifiers is common
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Power Constrained Systems - Rethink SDM

● Information capacity is logarithmic w.r.t. Signal Power under the same 
spatial and spectral constraints. 

● Exponentially higher power is necessary to achieve higher spectral 
efficiency

○ For better energy efficiency, one should exploit the spectral and spatial dimensions.

Information
Capacity (bits/s)

Spatial Dimension

Bandwidth
Signal-to-noise Ratio



Confidential + Proprietary

Capacity Scaling with Power Constraints Using SDM

Peter Winzer, Capacity Scaling Through Spatial Parallelism: From Subsea Cables to Short-Reach 
Optical Links - OFC2021 - M2A.5
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Optimizing Capacity of the Whole Cable vs. Individual Fiber Pairs

Conventional Approach
 

Dedicated pumps
High power / SNR / Capacity per FP

New Approach
 

Shared pumps
Lower power / SNR per FP but more FPs

4 FP w/ 
dedicated 

pumps
12 FP w/ 

shared pumps

Capacity per Fiber is lower 
but overall cable capacity 

scales linearly 

1

2

3

12

Lower overall unit cost

US Patent 9,755,734
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Google Trans-Atlantic Dunant Cable w/ Record 240Tb/s Capacity

● Turned on in Q3 2020
● Space Division Multiplexing

○ Innovation against common 
thought of maximizing spectral 
efficiency per fiber

● 12 Fiber Pairs
○ 20Tb/s per pair

● Power efficiency
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SDM in Short Reach Connection Example

Ref:  Bardia Pezeshki, Microled Array-Based Optical Links Using Imaging Fiber for Chip-to-Chip 
Communications - OFC 2022 - W1E.1

● Parallel Connection 
○ No serdes

● Reach 10m
● < 0.5pJ/bit

○ Compare with 3pJ / bit 
for VSR serdes

● > 1 Tb/s per mm
● New Application:

○ Memory 
disaggregation for HPC 
and ML accelerators
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System Opportunity: Traffic Growth Outstrips Technology Growth

● New Ethernet standard 
overdue

● IEEE 802.3df task force 
working on 800G and 1.6T 
Ethernets

● Expected timeline for 
800G/1.6T Ethernet is 
2025
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10x per 5 to 6 years

Slowdown of switch ASIC scaling

4x per 9 to 10 years

Slowdown of Switching ASIC Capacity Growth

● Optical switching may 
be an opportunity to 
augment electronic 
switching and provide 
energy efficiency.

256x100G

512x100G 256x200G

512x200G
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Where Should We Place Optical Switches?
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Challenges for Optical Switching in DC

● Optical switch challenges
○ High switching radix 
○ Low insertion loss 

■ Recall DC links are power budget limited and unamplified
● SDMs using parallel fiber would incur parallel optical switches

○ Cost and management complexity
● Transceivers with higher link budget and higher spectral efficiency works better 

with OCS.
● How should we balance the tradeoff between transceiver complexity and optical 

switching complexity, electronic switching vs. optical switching to achieve the 
best overall system performance, energy efficiency and total cost of ownership?
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Jupiter Evolving:  Transforming Google’s Datacenter Network via 
Optical Circuit Switches and Software-Define Networking

Leon Poutievski, Arjun Singh, Joon Ong, Rui Wang, Omit Mashayekhi, 
Mukarram Tariq, Jianan Zhang, Karthik Nagaraj, Rishi Kapoor, Hong Liu, 
Ryohei Urata, Virginia Beauregard, Lorenzo Vicisano, Jason Ornstein, 
Samir Sawhney, Stephen Kratzer, Nanfang Li, Junlan Zhou, Shidong 
Zhang, Patrick Conner, Steve Gribble, Amin Vahdat (Google)

Tuesday, August 23, 2022 CEST 
11:00am - 12:30pm

https://conferences.sigcomm.org/sigcomm/2022/program.html 

https://conferences.sigcomm.org/sigcomm/2022/program.html
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Conclusions 

● Continual scaling of datacenter presents new challenges and opportunities for 
optics.

● Heterogeneous interconnect technologies are required to address the different 
transmission challenges in an actual network

○ Pluggable modules presents flexibility, optionality, and ease of operation and maintenance.
● Coherent technologies help to overcome future challenges of link budget and 

fiber dispersion limits but requires
○ Optimized DSP and efficient optical modulators

● SDM is a way to trade spectral efficiency for energy efficiency
● Appropriate implementation of optical switching could augment electronic 

switching with more energy and cost efficiency, and bring better scalability to 
datacenter network fabrics. 
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Q&A
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The Need for Pluggable Modules

● We need different types of PMDs to serve the network function requirements 
and achieve cost targets

○ Copper
○ SRn, DRn, PSMn
○ FR4, CWDM-4 

● Operation considerations
○ Reliability

■ Yield for large-scale optoelectronic integration is still challenging
○ Serviceability
○ Flexibility
○ Mature technology ecosystem


