High Density Silicon Photonics with integrated III-V EAMs for Coherent Optical Engines

QRock FY22 ENLITEND Annual Review

Roshanak Shafiiha, Guomin Yu, Aaron Zilkie *Rockley Photonics Inc.*

Grad Students: Yujie Xia, Xinhong Du, Viviana Arrunategui-Norvick Faculty: James Buckwalter, Larry Coldren, Adel Saleh, Clint Schow *UC Santa Barbara*

© 2022 Rockley Photonics Ltd.

ARPA-E ENLITENED Annual Meeting 2022

Overview

- 1. Rockley Si Photonics Platform Differentiations
- 2. Overview of QRock ENLITENED approach, challenges and differentiations
 - QPSK modulation implemented with III-V EAMs integrated in low-loss Si Photonics platform
 - Simplified driver requirements yield substantial power savings
 - >10X footprint reduction compared to Mach-Zehnder implementations
- 3. Accomplishments so far: Gen1 Characterization Results
- 4. Remaining Work: Gen 2 Schedule and Deliverables
 - i. EAM, driver, and packaging improvements

5. Summary and Transition Plans

System level goals

© 202

Metric	State of the Art	Proposed	QRock Achievable
System Energy Efficiency	baseline	2X improvement	4-6X improvement (based on INTREPID)
TX+RX Energy Efficiency	20 - 40 pJ/bit (400ZR)	18 pJ/bit with 13dB link budget	< 10 pJ/bit
F PIC Footprint	Baseline	10x footprint reduction	> 30x footprint reduction

Rockley Photonics Platform Performance Advantages Rockley

Unique Benefits

- ✓ Low loss: (< 0.2 dB/cm)</p>
- Large-scale PIC capability, high levels of integration
- Strong confinement: Tight packing and turns as well as dense layout capability
 - Low loss compact bends < 10-100 um R_{eff}
- Low polarization dependent loss (PDL)
- ✓ Low loss, passive align fiber couplers
- Low wavelength sensitivity, accurate WDM filters
 - filters have 25x reduced λ sensitivity and variations
- KGD III-V integration for high yield actives

TE and TM polarizations have near-degenerate n_{eff} and mode profiles

Rockley Platform Technology Elements

Rockle

Wide Range of Platform Technology Elements to Address Multiple Market Verticals

Integrated Lasers

- **High-density WDM lasers**
- DFB, DBR lasers
- Tunable lasers, broadband sources

Modulators

- High-speed EAMs: Heterogeneous III-V 1310nm, monolithic SiGe 1550nm
- Carrier injection/depletion phase modulators

Mux / Demux / Filter Technologies Echelle

- AWG
- Echelle Grating
- Mach Zehnder Interferometers
- λ stable, process tolerant

Fiber Edge-couplers

• Integrated V-groove mode matched to SMF

Other Passives

• Splitters, taps, combiners, ...

M71

CWDM Mux/Demux

V-groove edgecoupler

Photodetectors

Monolithic Ge PD

Euler Bends

Tight waveguide bends for compact layouts

Analog Front End Electronics

- TX: Modulator & laser driver ICs
- **RX:** Transimpedance amplifier ICs •

Receiver Architectures

- Direct-detect
- Coherent detection
- Large arrays, high integration densities

Packaging

- Wafer-level packaging
- Integrated fanout
- 2.5D/3D integration
- Passive fiber attach

III-V EA Modulators for Ultra High Density I/O

Electrical switch size limited by BGA package, sets requirements on data density

- XSR interconnects allows substrate up to double size substrate to host CPO optical chips
- For 51Tb/s and 102 Tb/s switch ASICs with perimeterintegration:
 - Densities of 200 Gb/s/mm and 400 Gb/s/mm are needed for optical I/O components
 - > Need compact modulators and detectors with pitches of \leq 250 µm, channel rates of 100 Gb/s, and scaling to <125 µm and 200 Gb/s

Choose InP EAMs for high density Si Photonics for CPO

- Si MZMs can not meet the integration densities needed for future CPO generations
- Rockley half-ring EAM and Si RR modulators meet the density requirements, and are roughly the same size
- RRs are very sensitive to temperature and fabrication variations and require more control pads
- EAMs have wide operating bandwidth allowing open loop operation over 30C operating T range, 0-70C with T control © 2022 Rockley Photonics Ltd.

	E	lectrical		Optical						
		Switch		СРО	Faceplate Pluggable					
# lanes	Serdes rate (Gb/s)	capacity (Tb/s)	Electrical Data Density (Gb/s/mm)	Min Optical Data Density for XSR (Gb/s/mm)	lanes	capacity	modules	Faceplat e size		
256	50	12.8	100	50	8	400G	32	1RU		
512	50	25.6	200	100	8	400G	64	2RU		
256	100	25.6	200	100	8	800G	32	1RU		
512	100	51.2	400	200	8	800G	64	2RU		
1024	100	102.4	800	400	8	800G	256	4RU		
1024	100	102.4	800	400	16	1.6T	128	2RU		
512	200	102.4	800	400	8	1.6T	128	2RU		

Rockley U-bend EAM

ARPA-E ENLITENED Annual Meeting 2000 are bigger in area when consider more drive + control pads needed

400G Tx and 400G/800G Rx Chipsets

Rockley Co-

designed

8-ch TIA

- Rockley DR4 400 Gb/s Tx and Rx PIC + Bi-CMOS Driver/TIA chipset
- Tx: Advanced planar coupon integration technology for EAMs and lasers scales to 3D integration and ultra-high throughput III-V integration for OEs and CPO
- <u>Rx:</u> PIC based on Rockley monolithic Ge PDs and compact passives supports high data densities needed for CPO

See also: A. Zilkie et al., JSTQE, 25 (5), p. 8200713, 2019 P. Srinivasan et al., ECOC 2019, 2019, pp. 1-3

800G Rx PIC + Driver chipset

Rockley Optical Engine for CPO

© 2022 Rockley Photonics Ltd.

ENLITENED QRock - Coherent Tx with III-V EAMs

Schow group

Differentiators

- At least 10x Higher linear density coherent solution with U-bend III-V EAM compared to MZM solution, path to I/O densities of 10Tb/s with Rockley Compact U-bend EAM and integrated WDM MUXs/DEMUXs
 - up to 30x smaller length, > 2x smaller width (~50x smaller area)
- ii. Simpler to control (no phase balancing and impedance matching needed), less phase variations in multi-micron platform
- iii. Brings benefits of Rockley platform CPO optical engine platform, polarization independence, low losses, high integration densities,
- iv. Full range of integrated III-V actives allows for integrated III-V lasers and/or MZMs as well as needed
- Tradeoffs 6-8 dB higher Tx losses, higher laser power
- Further energy-improvement architecture evolution possible with addition of AWGRs, WDM switches and/or fiber switches

© 2022 Rockley Photonics Ltd.

ARPA-E ENLITENED Annual Meeting 2

Tx with parallel EAMs concept from Doerr at el. PTL 19 (15) p. 1184 (2007)

Unique design - QPSK Modulator Based on EAMs

C. R. Doerr *et al.*, "Compact High-Speed InP DQPSK Modulator," in *IEEE Photonics Technology Letters*, vol. 19, no. 15, pp. 1184-1186, Aug.1, 2007

• EAM1 and EAM3 need RF modulation; EAM2 only needs DC bias for adjusting power ratio

4 mm

Vcc1 Rc≴ R₃≹ $R_1 \ge$ M R₄≩ R₂≹ Ż₽, M₄ M₁₁ 715 um **≥**R₁₁ **≩**R₁₂

Schematic of one stage

34 GHz BW •

50- Ω input buffer

•

- 12.5 dB single-ended gain
- **Emitter-coupled**

2-stage 50- Ω output driver

Simulated S₂₁

UCSB 130 nm BiCMOS 50-Ω differential driver

Simulated 56 Gbps eye

Gen 1: Progess on QPSK signal generation

- Bandwidth limited by long wire bond at EAM cathode
- OOK 20G and 40G eyes are indicative of QPSK modulation
- Verified that phase shifters provide sufficient tuning range to set a QPSK operating point
- To be verified with constellation measurements

UCSB

Schow group

Rockley

<u>PHOTONICS</u>

© 2022 Rockley Photonics Ltd.

ENLITENED QRock - High Density Coherent Rx

- Monolithic Ge detectors in multi-micron platform ideal for coherent Rx:
 - Unique advantages:
 - 1. Accurate MMI splitters for Coherent Hybrids with low variability
 - 2. Reduced phase imbalances
 - 3. Natively polarization independent
 - 4. Inherently broad band
- Rockley's TIA co-designed with 3-Terminal differential PD pair gives ultra-low balanced receiver dark current performance
- Rx PIC based on Rockley monolithic Ge PDs and compact passives supports data densities needed for Coherent solutions and CPO

Gen 1: 1 pJ/bit Coherent Rx demonstrated

- 100 Gb/s operation below HD-FEC BER limit demonstrated
- > 98 mW EIC power consumption, no tuning power needed for PIC
- High 0.5 A/W responsivity of PIC measured from fiber facet to PD

Rx Optical Engine Results – 25 GHz NRZ

Demo Rx Optical Engine built using QRock PDs and 25 Gbps NRZ TIA

- > Short electrical connection from OE to EIC (TIA) confirmed by cross-section
 - 50 um CuP x 2, 120 um combined RDL, 220 um total
- > 25 Gbps/ch NRZ open eyes successfully demonstrated, error free operation
- > 100 Gbps PAM4 did not result in clean eyes with Gen 1 chipset
 - Rockley internal Gen2 chipset has demonstrated 100 G PAM4

Cross View

Gen 2 EAM and Driver - Optimized Co-Design UCSB Schow group

Gen 2 EAM - new waveguide shape and new RF electrode driven either from N side or P side

Power [pJ/bit]

RDL					EAM												
Temp (⁰ C)	Bias Voltage (V)	L _{RDL} (nH)	C _{RDL} (pF)	R _{RDL} (ohm)	Rsh _{RDL} (ohm)	Pad-Resistance Rpd (ohm)	Pad-Cap Cpd (fF)	RF Trace Eq Resist Rrf (ohm)	Inductance L (pH)	Sub-Resist Rsx (ohm)	Sub-BOX Cap Csx (fF)	Series Resist Rs (ohm)	Junction Resist Rj (ohm)	Junction Cap Cj (fF)	Bias Photocur Ip (mA)	Bias Photocur Eq Resist Rp(ohm)	BW (50 Ω driver and 50 Ω termed probe) (GHz)
	1	0.0496	0.0293	3.79	889	0.1	10	8.52	87.7	5	11.8	24.0	6.00E+08	46.6	0.0 0.5 0.79	- 2000 1266	~40 GHz

Gen 2 Driver - Custom Flip-Chip Layout

Driver optimized using EAM model

- 150 um pitch
- 75 um x 75 um bondpads
- Three variants taped out with different load and anode resistors

10.27

6.33

System-level power benchmarking and conclusions

- 1. Parallel EAM approach has the lowest power consumption
 - significantly lower modulator + driver power consumption,
 - laser power needs to be higher to overcome the additional passive splitter losses associated with the scheme architecture.
- 2. The InP MZM analog coherent scheme is also competitive, lower power consumption than the Si MZM analog coherent scheme
 - InP phase modulators more efficient (have a lower Vpi*L
 - better modulation factor and lower link budget penalty
 - lower laser powers, as well as less drive voltage.
 - may have the potential to have further reductions in power consumption if CMOS drivers to be used.
- 3. 200 Gb/s/λ PAM-4 parallel EAMs scheme has competitive power consumption to the lowest-power analog coherent approaches

_	Power Consumption									
Component	200 Gb/s Si MZM Analog Coherent	200 Gb/s InP MZM Analog Coherent	200 Gb/s parallel EAM Analog Coherent	200 Gb/s parallel EAM PAM-4 (next gen)	100 Gb/s Si MZM PAM-4 DR4	100 Gb/s EAM PAM-4 DR4				
Tx Laser [mW]	100	50	330	315	50	79				
Rx LO [mW]	100	50	50	0	0	0				
SOA [mW]	100	100	0	0	0	0				
Modulator + Driver [mW]	1000	680	180	600*	800*	400*				
TIA [mW]	664	664	664	540	166	270				
OPLL [mW]	186	186	186	0	0	0				
Total Power [W]	2.15	1.73	1.41	1.46	1.02	0.75				
d/Lq	10.8	8.7	7.1	7.3	10.2	7.5				
* Includes po required to n	wer consump neet equivale									

Conclusions and Transition Plan

- Rockley Photonics offers a versatile silicon photonics platform that uses III-V U-bend EAMs and monolithic Ge PDs providing advantages for integration density and power efficiency
- Rockley Photonics has developed a 400-800G DR4 TRx technology that can be used for traditional pluggable transceivers as well as a socketable OE version w/ FOWLP for CPO
- QRock Approach Silicon Photonics with integrated III-V EAMs for Coherent Optical Engines:
 - 1. A Tx PIC concept with parallel EAMs that can have lowest power consumption and most compact size compared to other coherent Tx PIC solutions (characterization results to be reported in future)
 - 2. Demonstrated Rx PIC which has excellent performance and is simple to operate