

ENLITENED Annual Meeting

LEED Phase 2

Making Practical Optical Networking a Reality

George Porter/Papen

July 19, 2022

Networking today: Packet switch scaling trends

LEED: Cost- and energy-efficient network scaling

- Network scaling via packet switch scaling increasingly no longer "business as usual"
 - Packet switch transistor scaling
 - Design, fab, test costs increasing
 - Footprint die size limited
 - Power/thermal envelope air cooling limited
 - Multi-chip packaging (cost, complexity)
 - Liquid cooling on the horizon (cost)

- Packet switch I/O scaling
 - Serdes footprint & power increasing
 - Board trace losses increasing
- Multi-chip package and/or Copackaging (cost, complexity)

Optical switching provides an additional / alternative path for scaling networks

Opportunities and challenges for optical switching

Opportunities

- Reduced CAPEX
 - Hardware cost savings: fewer optical transceivers + lower cost per switch port
- Reduced OPEX
 - Lower networking power consumption
 - More networking bandwidth/CAPEX \rightarrow More power efficient compute

Challenges

- Overcoming customer hesitancy around new technology
- Supporting applications designed for a packet-switched world
- Introducing new functionality at multiple points in the networking stack...

LEED Project Overview

System level goal: 2x increase in transactions/Joule

Initial experiments confirm LEED premise:

Higher bandwidth leads directly to higher energy efficiency

- For shuffle-bound apps:
 ~2x bandwidth →
 2x energy efficiency
- For sort application:
 ~3x bandwidth →
 2x energy efficiency
- "Bandwidth per buck" determines actual operating point

Protocols for sending packets over circuits

Network interface hardware

LEED Phase II: developing a network interface controller capable of implementing time-synchronized protocols and interfacing with an optical switch at high bandwidth

Corundum – open-source FPGA NIC design providing:

- High-precision time sync with PTP IEEE 1588 ✓
- Timed packet transmission \checkmark
- 1,000s of independent hardware queues ✓
- High-bandwidth PCIe interface with DMA ✓
- Protocol implementation [ongoing]
- Software driver (currently sockets based, RDMA planned) [ongoing]

Industry support from Xilinx, Intel, Cisco and Silicom – all code is open source

7

FPGA NIC 200 Gb/s network I/O

Optical switching hardware

Link

LEED Phase II: fabricating a high-radix, high-speed, low-loss optical rotor switch using technologies compatible with low-cost manufacture

Optical switch design \checkmark

- 128 in x 128 out single-mode fibers
- 8 µs switching time
- 5 dB insertion loss
- Lower-cost mfg. methods (vs. Phase I)

Optical switch fabrication:

- 3U enclosure, electronics, mechanics designed ✓
- Full assembly waiting on subsystem supplier delays [ongoing]

Motor control:

- Two rotors synchronized to \pm 6 µs phase error at 7,200 rpm \checkmark
- Improving controller to achieve similar performance at 15,000 rpm [ongoing]

Optical link hardware

Applications

Protocol

LEED Phase II: demonstrating link-level components needed to acquire and close a link via burst-mode without optical amplification in the presence of power transients

Larger link margin using ADPs (Sandia/UCSD)

- Compensate for signal attenuation through optical switch
- Operation at 25 Gb/s demonstrated with sufficient responsivity for switch loss
- Potential new LEED research in compensating burst-mode nonlinearities

Larger link margin via high-OMA modulator (Axalume)

- Compensate for switch loss at the transmitter
- Integrated 25 Gb/s per-lane modulator array compatible with WDM source

Technology Transition: Testbed Deployment

• Custom links will enable maximum performance

Technology Transition: Pathways

inFocus Networks

- Axalume (est. March 2017)
 - Pathway for commercializing link technology
 - Products can support optically-switched networks and/or other market segments
 - Secured external funding/investment (gov. and industry)
- inFocus Networks (est. March 2018)
 - Pathway for commercializing switch and networking tech.
 - Focus is optically-switched datacenter/HPC networks, but initial traction in other markets as well
 - Secured external funding (NSF)

Ongoing work

- Phase II technical:
 - Complete switch fabrication + NIC & protocol implementation
 - Complete testbed build-out
 - Analyze application performance on testbed & quantify value propositions
- Phase II tech transfer:
 - Use testbed results to advance partner/customer relationships
 - Confirm initial target market segment and engage customers
- Follow on (SCALEUP / private investment):
 - Optimizations for initial use-cases/customers
 - Hardware manufacture
 - Pilot deployment with customer

