High-Resolution Calorimetry for Probing Reactions of Nanopowders with D₂

> Pramod Reddy and Edgar Meyhofer Department of Mechanical Engineering ARPA-E LENR Workshop | October 21, 2021

1. Description of a new microwatt resolution calorimeter

2. Results from two sample runs involving D_2 and a nanopowder

Past reports of anomalous heat outputs

Table 1. Sample composition.

Sample name	Tested at	Weight (g)	Molar fraction (%)				
			Cu	Pd	Ni	Zr	0
PNZ4s	Tohoku University	109.4		3.6	25.2	53.4	17.8
PNZ4	Kobe University	109.4					

14.9 eV per D atom Assuming all introduced Deuterium results in energy generation

Iwamura, Yasuhiro, et al. J. Condensed Matter Nucl. Sci 24 (2017): 191-201

Microwatt resolution calorimetric reactor

Specifications

- Temperature range: R.T. 300 °C
- Pressure range: 10 mbar 30 bar
- Heat flow resolution: $< 3 \mu W/\sqrt{Hz}$
- long-term stability <4 μ W/hour
- Mass balance resolution: 0.1 µmol **Lumped-thermal capacity model**:

Gas handling system

A. Reihani et al., ACS Sensors (2020)

Demonstration of calorimetric capabilities: hydrogenation of Pd nanoparticles

Preliminary work exploring heat outputs from metal nanopowders in D₂ environments

First run: Measurement from a nanopowder

First run: Heat release rate (nanopowder + D₂)

9

Second run: Heat release rate (nanopowder + D₂)

10

Instrument stability across baseline measurements with He

Heat release rate in He based control experiments is small

Necessary next steps

- Repeat measurements with a blank sample for both D₂ and He to eliminate the possibility of reactions with adsorbed Oxygen or due to possible leaks into the calorimeter
- Characterize reaction products using mass spectrometry
- Explore the possibility of oxidation of metals as source of exothermic reactions