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Project Outcomes:
Unequivocal demonstration of the presence or
absence of LENR phenomena through replication
experiments with additional characterization and
detection methods
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Key takeaway: anomalous emitted radiation and
surface isotopes have been reported in metal

deuterides under low power laser irradiation and
should be revisited with improved radiation
detection and isotopic characterization




Hypothesis

Hypothesis:

Nuclear reactions can occur in metal deuterides at near-ambient temperature and pressure conditions

under low-power laser irradiation
(Beltyukov 1991; Nassissi 1999; Mastromatteo 2016; Ushikoshi 2020; Barrowes 2022)

More specifically:

DD and HD fusion reactions can be accelerated by nonradiatively transferring corresponding
transition energies (23.8 MeV and 5.5 MeV respectively) to resonant excited states of heavy lattice

nuclei (e.g. Pd and Ti isotopes).
Such transfer is enabled by shared phonon and plasmon modes that cause temporary delocalization

of nuclear states in a coherence domain (delocalized nuclear excitons). ‘
Dicke enhancement can accelerate what are initially low transfer probabilities due to weak couplings.

[P 8




Overview of experimental setup
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Key steps
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VVariables overview

Independent Observables Causes
variables
* target material (Pd, Ti); Spots Bursts
- target temperature (25-175 °C) with low-Z In neutron and
chamber gas (vacuum, H2, D2, Ar) elements gamma detectors
» chamber pressure (0.01-4 bar); / Prosaic?
+ laser wavelength (405, 594, 640, 1064 nm);

+ laser type (pulsed or continuous-wave) \ Nuclear?

+ laser strength (up to 1 J/pulse or 5-50 mW for CW);

spot size (0.01-1 cm2).
* neutron counts (He-3 counter detectors; efficiency ~20%)
* gamma counts >100 keV (Nal gamma spectrometers)
* isotopic ratios of sample surface materials (mass
+ potentially many hidden variables spectrometer + NAA,; goal is accuracy +10%)
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Reactor design
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Reactor design (cont'd)
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Preliminary experiments

At US Army EDRC
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Data Acquisition

SEM-EDS surface maps

Isotopic detection

Radiation detection (n)

Radiation detection (y)

QArpPa-e

IC HAT

Bitmaps

Gamma spectra from
Neutron activation
analysis (NAA) and
mass spectra from MS

Neutron counts per
second from 3He
proportional counter &
liquid scintillation
detector

Spectra and counts
>100 keV from HPGe
and Nal spectrometers

TBD

Use of moderator to
optimize sensitivity for
1-10 MeV neutrons

Focus on 100 keV to 5
MeV range

Before and after each
experiment

Before and after each
experiment

Continual data
collection w/ time
resolution of counts per
second or higher

Continual data
collection w/ time
resolution of counts per
min or higher

Dropbox or Google Drive

Dropbox or Google Drive

Local computer +
Postgres time series
database on an MIT-
based server; Dropbox
or Google Drive backup

Local computer +
Postgres time series
database on an MIT-
based server; Dropbox
or Google Drive backup




Reports of surface changes in the literature
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Reports of surface changes in the literature (cont’d)

@
SEM-EDS analysis of spots

o 1 ]
277.351 counts in 30 seconds

o 1 2
954,234 counts in 30 seconds

Barrowes 2022, ICCF24
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SEM-EDS surface mapping in collaboration with Texas Tech
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Reports of neutron bursts in the literature
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Reports of neutron bursts in the literature (cont’d
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Figure 14. Screen shot of the neutron monitoring PC showing a massive neutron emission from reactor 1 after the experiment with a 405 nm laser.
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Reports of neutron and gamma bursts correlated with irradiation
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24/7 data streaming with universal time stamps

PostgreSQL
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Cloud-based time series optimized Postgres database

Adminer 4.7.3 4.8.1 Select: neutronl

DB: |exper\menFs hd Select data  Show structure  Alter table  New item

Schema: | public >

Select Search Sort Limit Action

SQL command  Import time v | descending 51| | select |!

Export  Create table v |[]descending -

select codep_ps SELECT * FROM "neutronl” LIMIT 51 Edit

select codep_ps2

select cp_a [J Modify time channels | id

select cp_r (] edit  |2020-01-10 15:52:44,533429 | {0} 180119

select currentl

select digtempsensors2 [ edit |2020-01-10 15:53:07.17187 | {0} 180120

select digtempsensors3 [J edit | 2020-01-10 15:53:12.445233 | {0} 180121

select fukai_ps1

— edit -01- 153:17.

select gas_flow_1 O 2020-01-10 15:53:17.704783 | {0} 180122

select gm1 [ edit 2020-01-10 15:53:22,985357 | {0} 180123

select gm2 (] edit  |2020-01-10 15:53:28.272824 | {0} 180124

select h_d_Ivl_1 . 1

select hydrogent [J edit |2020-01-10 15:53:33.535181 {0} 180125

select keithley_ps (] edit  |2020-01-10 15:53:38.80538 |{0} 180126

select multimeterl ’ [

dit -01- :53:

celact multimater2 [ edi 2020-01-10 15:53:44.107407 {0} 180127

select multimeter3 [J edit |2020-01-10 15:53:49.365995 {0} 180128

select multimeter_trackersl [ edit |2020-01-10 15:53:54.643854 {0} 180129

select multimeter_trackers2 -

select neutronl [J edit | 2020-01-10 15:53:59.901735 {0} 180130

select neutron_sean (] edit |2020-01-10 15:54:05.169946 {0} 180131

select optimaloadcell -

celect ortec [J edit  |2020-01-10 15:54:10.43189 | {0} 180132

select osprey [ edit 2020-01-10 15:54:15.722133 | {0} 180133

select phprobe [ edit |2020-01-10 15:54:21.082643 {0} 180134

select precisionscalel ——

select pressure [ edit |2020-01-10 15:54:26.377788 {0} 180135

select rotstage [ edit 2020-01-10 15:54:31.642518 {0} 180136

select rotstage2 ;

dit 020-01- :54:36.95 7

select target_amps_1 l;] edi 2020-01-10 15:54:36,955902 | {0} 18013

select target_temp_1 [0 edit 2020-01-10 15:54:42,221534 | {0} 180138

select tempandlight [ edit  |2020-01-10 15:54:47.497802 {0} 180139

select tempcontroll -

select temps_fukail [ edit |2020-01-10 15:54:52.755105 {0} 180140
\ ) ° .ﬂ select thermistorl [] edit |2020-01-10 15:54:58.023233/{0} 180141

g ' l ‘ b select x123
select x123sdd Page Whole result Modify Selected (0) Export (~ 1,266,176)
HANGING WHAT'S POSSIBLE select x123sdd2 12345 .. last ‘ ‘ ()~ 1,266,176 rows Save



Database can accommodate scalar and vector data

Adminer 4.7.3 4.8.1 Select: ortec
DB: |experimen¢] Select data  Show structure  Alter table  New item
Schema: | public v
Select ‘ Search Sort Limit Action
SQL command  Import (50 ]| | [Select]
Export  Create table
SELECT * FROM "ortec” LIMIT 50 Edit

select codep_ps
select codep_ps2 2
select cp_a
select cp_r
select currentl
select digtempsensors2 (
select digtempsensors3
select fukai_ps1

select gas_flow_1
select gm1 (
select gm2

select h_d_Ivl_1 ¢
select hydrogen1 (
select keithley_ps
select multimeter1
select multimeter2
select multimeter3 [
select multimeter_trackers1

Modify time
edit | 2019-12-30 20:21:161 {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,43,69,68,51,60,71,103,110,119,98,68,42,45,63,48,51,87,109,250,475,666,607,432,291,185,189,150,87,57,42
edit |2019-12-30 20:22:17 | {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,44,91,64,42,42,91,90,117,144,107,76,50,58,41,48,45,76,121,243,490,609,609,449,263,222,191,158,85,71,33
edit | 2019-12-30 20:23:19 | {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,46,74,77,50,80,76,85,104,112,105,80,54,54,45,71,55,78,141,256,453,632,669,429,274,193,191,156,110,58,3
edit | 2019-12-30 20:24:21 | {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,51,76,49,64,69,80,99,95,111,97,79,62,54,54,53,71,86,135,255,451,622,706,457,293,211,205,169,90,54,34,5
edit |2019-12-30 20:25:23 | {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,48,68,64,71,72,76,99,114,88,98,72,66,60,74,57,63,6 3,131,205,465,628,621,464,281,196,199,129,83,47,48,4
edit | 2019-12-30 20:26:24 | {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,41,68,71,68,60,76,99,99,115,98,68,59,53,56,66,73,61,139,250,456,685,637,452,235,204,172,138,106,61,43,
edit | 2019-12-30 20:27:26? {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,53,73,65,52,70,73,86,98,119,95,79,80,50,59,62,64,78,152,240,481,609,659,498,275,173,170,156,80,51,32,3
edit |2019-12-30 20:28:28 | {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,48,72,57,75,68,77,95,114,114,99,62,76,75,64,55,69,88,116,233,482,625,591,475,277,199,196,150,86,63,50,
edit |2019-12-30 20:29:30 | {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,63,64,68,61,57,81,83,109,110,93,82,68,48,42,63,64,77,124,241,451,615,645,395,271,173,175,155,91,55,43,
edit | 2019-12-30 20:30:31 | {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,44,57,61,56,57,76,97,109,103,94,78,62,59,49,63,48,88,137,253,475,625,623,406,279,215,197,138,84,49,49,
edit | 2019-12-30 20:31:33 | {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,44,56,46,65,47,75,81,123,104,88,83,56,62,56,65,65,70,125,269,463,683,609,437,263,172,184,121,92,58,50,
select multimeter trackers2 ) edit izo19-12-3o 20:32:35E{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,59,83,52,58,60,74,97,107,121,88,69,65,62,67,59,56,76,116,260,441,626,634,454,269,206,190,164,86,60,46,
select neutronl (] edit | 2019-12-30 20:33:37 | {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,45,67,60,62,70,61,85,110,100,74,79,64,46,52,51,58,83,128,238,452,652,668,441,278,185,194,133,91,63,46,.
::::z: 2:;:;?5:352” [ edit i2019-12-30 20:34:38? {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,61,67,68,52,58,72,94,108,125,93,89,58,56,57,48,62,106,104,231,488,642,674,481,274,187,158,162,94,57,57
select ortec [J edit | 2019-12-30 20:35:40  {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,56,67,56,59,50,69,89,115,100,109,58,69,53,43,52,61,89,129,266,472,650,624,390,243,220,209,147,83,62,51
select osprey () edit  |2019-12-30 20:36:42 {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,59,85,55,58,78,69,76,124,120,89,80,58,55,46,59,62,78,113,241,467,637,621,453,270,193,183,163,119,59,4C
::::z: gr;;z:’:nscmel edit  |2019-12-30 20:37:44: {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,52,72,64,66,68,66,90,117,110,106,75,62,51,52,65,65,82,134,231,461,652,623,450,237,197,188,155,101,61,3
select pressure [ edit |2019-12-30 20:38:45 | {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,09,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,44,68,55,56,57,77,104,119,141,114,64,60,52,47,58,74,91,114,239,444,645,632,486,289,180,200,170,103,55,
z:::g :g::::g:z () edit :2019-12-30 20:39:47 {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,45,55,47,58,62,73,87,117,97,97,63,53,37,56,56,74,91,114,234,427,644,628,474,240,192,181,165,114,59,43,
select target_amps_1 [ edit |2019-12-30 20:40:49 | {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,45,57,57,75,58,63,93,119,110,101,88,61,50,65,52,78,87,138,233,458,615,676,443,257,204,205,153,88,63,49
select target_temp_1 () edit | 2019-12-30 20:41:51 | {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,51,72,59,66,63,86,104,110,106,85,78,53,43,62,60,60,89,112,220,459,660,628,489,279,210,194,137,85,55,5€
edit | 2019-12-30 20:42:52 {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,43,61,65,66,63,71,92,94,133,108,80,55,52,48,63,68,88,123,262,483,617,626,461,289,180,194,147,92,57,49,
edit |2019-12-30 20:43:54 | {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,45,60,69,61,62,73,102,101,103,88,56,50,64,53,57,60,68, 106,244,443,646,617,431,290,218,177,165,98,54,37

select tempandlight
select tempcontroll
select temps_fukail (
select thermistorl

select x123 Page Whole result Modify Selected (0) Export (~ 196,964)

select x123sdd 12345, last | | ()~ 196,964 rows | | [Save |
select x123sdd2
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Example: neutron background

show editor | hide editor | clear cache and refresh

Neutrons lab

Neutron counts
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time: not selected

%— Neutrons

log scale | lin scale
data | query
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Example: neutron burst

show editor | hide editor | clear cache and refresh
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log scale | lin scale
data | query
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Example: plotting data from different data source

Stage position

140000
120000
100000

80000

60000

40000

20000

.&A.—_—L_.wh____d___ R ——

25 Jan 26 Jan 27 Jan 28 Jan 29 Jan 30 Jan

time: not selected
B— xvalue
B— zvalue

— positioncounter
log scale | lin scale
data | query

Temperatures

70
60
50
40

30

25 Jan 26 Jan 27 Jan 28 Jan 29 Jan 30 Jan

‘i' 1)' j‘i' e tinm_e::eor;:?lected 21
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Example: plotting data from different data source (cont’'d)

Ortec time histories

15000
10000
5000
ihh AAAAAALAAAAAAAAAAAAAAAAAAAL
25 Jan 26 Jan 27 Jan 28 Jan 29 Jan 30 Jan

time: not selected

E— ch1-1100 (all)

B— ch90-120 (14 keV)
E— ch45-60 (6 keV)
E— ch835-850 (122 keV)
B— ch935-950 (136 keV)
log scale | lin scale

data | query

Ortec spectrum
700000
600000
500000
400000
300000

200000

100000 FJ\_A\—//’U%
) 0 .\

9; °
‘ ' ' ‘ g 100 200 300 400 500 600 700 800 900
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Obtaining low-cost large-area He-3 neutron detectors

’ | T 1 '|| .' [

10x 3He Neutron Detector Bank
$5,995.00
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Shielding to reduce background (neutrons, gammas)

> Working with Igor
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Toward a statistical framework for neutron/gamma detection

20230423031900.txt
025f '
0.20f
0.15¢
0.10
0.05¢
0.00 ¥ i S —
0 2 4 6 8 10 12

neutrons every 60 minutes

Simulation of 100 experiments with 536 events and mean = 4.03008 (band == 2 sigma)

Probability

— Experiment with 536 events and mean 4.03008

20230428152700.txt

Simulation of 100 experiments with 200 events and mean = 4.25532 (band == 2 sigma)

/\/ —— Experiment with 200 events and mean 4.25532

07 é 4 6 810 12

neutrons every 60 minutes

o= AN W
Sonono

Probability
OCOO0OO0OOO0OO
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Toward a statistical framework for isotopic analysis

H H . Journal of Radioanalytical and Nuclear Chemistry, Vol. 263, No. 3 (2003) 691-696
Building on : -

Use of combined NAA and SIMS analyses for impurity level isotope detection

G. H. Miley,!* G. Narne, T. Woo

University of lllinois at Urbana-Champaign, Department of Nuclear, Plasma, and Radiological Engineering,
103 S. Goodwin, Urbana, IL 61801, USA

(Received April 6, 2004)

Neutron activation analysis (NAA) offers advantages for detecting impurity levels of select isotopes that have suitable neutron cross sections.
Secondary ion mass spectrometry (SIMS) on the other hand detects most isotopes, but suffers various molecular interferences and covers only a
small beam size volume per run. These two methods are combined here to study a large number of isotopes in titanium thin films in an electrolytic
cell experiment. Nine isotopes are covered by NAA and over 50 with SIMS. An overlap in the data sets allows a normalization of SIMS data to the
more accurate NAA measurements.

Promising isotopes: — D 2+ isotopes with detectable delayed y (isotopic ratio) =
.I,: 2 D 1 isotope with detectable delayed y 3 1w 15 16w I:I:
Li | Be D Short t,,, or weak intensity delayedy | B | € | N | O | F | Ne
E.ﬁﬁ .01 — ‘ICMMls |2.III.M.J \ l-l.Ul‘ 5 L 1sm“ "mﬁ 20.1:5
Na Mgi E] Absent or undetectable delayed y allsilpls!alar
290 J| 243 3 4 3 26.98 2008 )| 3087 )| 3207 345 )| 3995
KfCfSc|Ti|V Ga | Ge | As | Se | Br | Kr
Rb|Sr| Y |Zr |Nb In|{Sn |Sb|Te| I | Xe

X ») 2
gi' l g o ‘J |_ssar )| sr62 )| ssor || oz )| e2m [ ss sz | nen J 1oure | vzrs | 1260 | 1z |
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Toward a statistical framework for isotopic analysis (cont’d)

%OAK RIDGE w Science Areas Vv Work With Us v

National Laboratory

Nuclear Analytical Chemistry Section

Chemical and Isotopic Mass Spectrometry Group

About Facilities Instrumentation Projects Publications  Staff

The Chemical and Isotopic Mass Spectrometry (CIMS) Team in ORNL's Nuclear Analytical Chemistry and Isotopics
Laboratory Group specializes in ultra-trace analytical measurements. We develop methods and technologies and
make measurements in support of national and international nuclear safeguards, security, nonproliferation,
verification, and forensics missions. We perform vital measurements in support of the stable and radioisotope
production efforts at ORNL. The CIMS team leads the multi-lab DOE/DOS program to provide analytical support to
the IAEA’'s Network of Analytical Laboratories for analysis of samples collected during onsite inspections of nuclear
facilities and heads the analytical laboratory in the Mobile Uranium Facility, which helps secure nuclear material
worldwide. In recent years members of the CIMS team have been recognized for their important national and

international contributions with multiple Secretary of Energy Achievement Awards and the coveted DOE/NNSA
Joule.
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Framing

Fusion reaction viewed as a state transition to a lower energetic state, hindered by
the reconfiguration of nucleons.

|D2> |160+160
— t=—0.0 fin /¢ —
(@)
i N — ’ 2
24 MeV 20 MeV ! Hl2p> . ,
[*He> |, |325%> Y . 10 eV
[1s> | ®

Analogous to how a state transition at the atomic level is hindered
by the reconfiguration of electrons.
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Fusion-fission hybrid reactions

Conventionally expected but hopelessly slow:

(ONONONONONONO,

OO0 O0O00O0O0 |

o O O o o O O 2 % 1875.6 MeV mass ID;
ONONON-NONONO),

(O ONONONONONO photon
g g 8 g o g g 23.8 MeV mass defect meﬁ:
O o O o O.o o 3728.4 MeV I4He> 4

O o o O O O o . eV mass ——
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Fusion-fission hybrid reactions

Conventionally expected but hopelessly slow:

©O00000O0 —
©C0OO0000O0 | —
O O O O O O O 2 x 1875.6 MeV mass IDL Al—>— Esféglldr:§\éxr2i?§;on
006000 —— | 7" neutrons
ONONONONONONG photon +7.1 MeV kinetic
g g 8 g O g g 23.8 MeV mass defect —+23.8 .y kineti: I1U4Pd> 66766, MV
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Terhune & Baldwin PRL 1965
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NUCLEAR SUPERRADIANCE IN SOLIDS*
J. H. Terhune and G. C. Baldwin

Advanced Technology Laboratories, General Electric Company, Schenectady, New York
(Received 16 February 1965)

A general theory of coherent spontaneous
gamma-ray emission from an assemblage of
isomeric nuclei in a perfect crystalline solid
has been developed. The solid, characterized
by internal energy states of the nuclei, by the
lattice vibrations, and by the electromagnetic
field, is treated as an integrated quantized sys-
tem rather than as a number of noninteracting
nuclei.!”* Transition probabilities are calcu-
lated by the usual methods of first-order time-
dependent perturbation theory.

Coherent spontaneous emission of radiation
from a gas has been discussed by Dicke.® It
was shown that transitions exist for which the
radiation rates, line shapes, and linewidths
are all different from the corresponding quan-
tities for an assemblage of noninteracting radi-
ators. In particular, certain states were pre-
dicted that possess radiation rates much great-
er than normal because of correlations among
the internal motions of the various molecules
composing the system.

In a solid composed of N identical two-level
nuclei in a perfect crystal lattice at a uniform
and low temperature, correlations in the in-
ternal motions of the radiators are more prob-
able than in the case of a gas. Furthermore,
the interactions among members of the solid
system are much stronger than in the gas, be-
cause of the coupling between neighbors in the
lattice. The usual assumption' ~* that each nu-
cleus radiates independently of the states of
other nuclei in the system is incompatible with
the coupling of the nuclei through the common
electromagnetic and phonon fields. Calculations

of the spontaneous radiation rate for a solid
system in which the nuclei are a priori assumed
independent preclude the possibility of coherent
spontaneous gamma emission by assumption.
The present analysis is free from this incon-
sistency. Finally, the wavelength of the radia-
tion is comparable with the spacing of nuclei

in the lattice.

Using the method of Dicke,® the nuclear states
are described by a vector model in which the
vector orientation is quantized in energy space
in analogy with fermion spin. The nuclei are
assumed identical, in a uniform and field-free
environment, with only two nondegenerate in-
ternal energy states coupled by a radiative
transition. The lattice is assumed harmonic
with nearest-neighbor interactions only; the
phonon spectrum is approximated by the Debye
model. The crystal is considered in the adia-
batic approximation, and is assumed to be at
rest with respect to the observer.

In the Hamiltonian for this system,

= ”nuclei +Hlattlce +Hradiation Y
all terms except the interaction term H’ are in-

dependent of the time. The latter is
ro_1 R 3 *8
H 32kl(ak e)Rk++(ak‘ e‘)Rk_],

in which 33 * and d;, are photon creation and de-
struction operators, respectively, & charac-
terizes a mode of the electromagnetic field,

€ and é* were defined in reference 5, and the
nuclear excitation and de-excitation operators
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Excitation transfer

Quantum state transfer through activation of couplings

3
readout

2
— =y N
c z _]-
-2

-3 T T T T T T T T T

-+ <4 43 -2 -1 ©°o 1 2 3 4

12

LD

0B

kinetic energy (classical) 2 |
state occupation probability , |

c

S

5 (quantum) oz

Q.

8- [+11] v
0.2

T T T T
C 40 10

Frimmer & Novotny (2014) .
Am. Journal of Physics Classical analog fo two

coupled quantum systems

Two qubits
implemented in silicon. Eisfeld et al. (2012) Physical Review E

Briggs et al. (2011) Physical Review E

Zhang et al. (2018) Chinese Physics B
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Mechanical analogs for excitation transfer

Damped oscillations Weak coupling «— Strong coupling 4=
Start: excited Start: Blue non-excited Start: Blue non-excited
3 3 3
2 24 . 2 4
1} o @ 0
-1 A -1
-2 2 -2 4
B T e . 7R T T Y A T o T 5 3 3 B R T TR S S T
§ 12 ’é\ 12 ’é\ 12
"q')' Lo E LD E Lo
5.5 0B 5.5 il 5.5 oB
X X X
GC) + 06 GCJ + o8 GCJ + 06
O ™ OF o 2z ™
C S 4 Q = 02 B = o
o 5 ° 5 ° 5
= QO o F QO o = O ooy
(@] (@] (@]
& & & & & & 2 %% & o ™ 3 & & & m
time time time

—— Energy (total)

Energy of orange pendulum
—— Energy of orange pendulum
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Phonons/plasmons as source of couplings
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Delocalized excited states as intermediate steps

(one possible pathway of many)
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coherent acceleration of em

Superradiance

—

uoI}Blae2dY

(ONoNoNoRORONOXO)
00000006
©e000006
©@@000006@
©e000006
©0e000006
(ONoJoJoRoXoNoRo)
(ONONONONONONOXO)

(OjojojoNoNoNoNo}
[ojojojoNoNoXoo}
00000006
0000006006
0000000
(ojojojoNoNoXojo]
(ofojojoNoNoNoo}
OPOOOOOOO

N=10

associated with
delocalized

Couplings
states

oney

(oJoyoNooJoNo o
(oJojoNoNoJoNo o
(oJoNoNoReNoNo O
00000060
(oJoNo oo NoNo o
(o) ojoJoNoJoNoXo])
(oJoyoNooJoNo o
(oJoNoJoNoJoNoXo

i
Z

1 . h
<o ™~ <

(OJoNoNoNoNoNONO)
(OXoNoNoRONONONO)
(OJoNoNooNoNONO)
(OJONONORONONONO)
(oJoJoNoRoNoNoNO)
(ONONONORONONONO)
(OJoNoNoRoNOoNONO)
OPPOOOOO

i
Z

30

Time (ns)

S_._."il PLO RS




What determines nuclear energy levels & reaction products

Nuclear molecule literature:

Cm +Ca

contact point

o
asymmetry =
‘}: >
/ . 200
" 5
5
E 180 ' \ \
K ;—/\) QX_/ Q/ O "Z 160 “‘,
; s

deformation

OO

elongation

Zagrebaev & Greiner 2010, Springer
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Low-Z elements from near-symmetric Pd fission

|102Pd"> + 476 MeV excitation

©000000 | =
©0 00000 | =
ANNNNNL % R® D> [D> EI‘“des
ANNNANN» OJNO) O © O 0 (@) \ T il_ +23.8 MeV excitation
ANNANNN> i | F ——
NNNNNN» i - [
Yo 0099000 | i
W (ON©) O D (@) O 0O 23.8 MeV mass defect E E i
Stimulation ©) OO0 00O O0 (0] i i ;' o |*Ca=>
s e 590 © O O O ol M el M e
magnon-nuclear o0 00 © 00 - — +(15.8+47.6) MeV kinetic
coupling 53964.8 MeV mass
|°8Fe> +40944 5 MeV mass

——— = 94509.3 MeV

(©) Quantum ratcheting
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The Emergence of Quantum Energy Science

Quantum computing

a initialization readout b C
[$a(0)) + 119, (0)) Ya () + ¥ (D) e -
)13 nm V' 4
® @ L AN N -
— Sy
® e iHt/h ® . a T
—_—_ energy transfer b)ii
coupled qubits (information processing)
Quantum solar
d e f Donor , Acceptor
{[¢] p '
Zﬁ ® - ® @O OO0
_—— O ' OO
o O @ o O @ O g@{r @@ .
coupled molecules ene‘qu “an.S',er “ @ O®®‘( O O
(molecular excitation) @, OE O

Quantum batteries

cavity
® @ o @
|/ X/ N\ /| | I
o 0= O B
— superabsorption
coupled molecules (molecular excitation)

Quantum nuclear
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Metzler et al. 2022
https://arxiv.org/abs/2303.01632 =
L 2 ®

T ST energy transfer 0000 0 0 o o0
coupled nuclei (nuclear excitation) 00000 0 0 0O
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First conference on “Quantum Energy”

! ICngsggl?etrI\?:ga(:n 86 days 17 hrs 9 mins 3 secs Hosted by
Quantum Energy

4-6 December 2023

SUlkan on the Back Home Registration Program ¥  Sponsorship Information ¥  Visit ¥  Information ¥

left to the conference

.. MELBOURNE » AUSTRALIA

Late Breaking Posters Now Opened: Submit Now KE\[ Dates

Call for abstracts

See you at the MCG Closed

Registrations open

ICQE 2023: Where quantum energy meets tomorrow  open

Australia's national science agency, CSIRO, is proud to present the International Conference
event to explore the role of quantum mechanics in addressing our global energy challenges SCIENCE ADVANCES | RESEARCH ARTICLE

ICQE 2023 will bring together will bring together thought leaders from around the world to

of our global energy challenges and transform the energy landscape for the future. PHYSICS

It offers a cross-disciplinary_program on the fundamental principles, and applied engineerin Su perabsorption in an organ ic m icrocaVity:

conversion, storage and transport. Towa rd a q uantum battery

Australia’s Chief Scientist, and renowned physicist, Dr Cathy Foley AO PSM will deliver the ¢ James Q. Quach’*, Kirsty E. McGheeZ, Lucia Ganzer3, Dominic M. Rouse“, Brendon W. Lovett“,
by six other esteemed keynote speakers including Prof Gerard Milburn, Dr Alexia Aufféves @ Erik M. Gaugers, Jonathan Keeling“, Giulio Cerullo3, David G. Lidzeyz, Tersilla Virgili3*
breaking work and latest insights.

The rate at which matter emits or absorbs light can be modified by its environment, as markedly exemplified by

the widely studied phenomenon of superradiance. The reverse process, superabsorption, is harder to demonstrate

because of the challenges of probing ultrafast processes and has only been seen for small numbers of atoms. Its

central idea—superextensive scaling of absorption, meaning larger systems absorb faster—is also the key idea

underpinning quantum batteries. Here, we implement experimentally a paradigmatic model of a quantum battery,

Don't miss out on this enlightening quantum event — reserve your spot today. constructed of a microcavity enclosing a molecular dye. Ultrafast optical spectroscopy allows us to observe charging

dynamics at femtosecond resolution to demonstrate superextensive charging rates and storage capacity, in

o agreement with our theoretical modeling. We find that decoherence plays an important role in stabilizing energy

Dr James Q. Quach | PhD, PGradDip, BEng (Hons), BCS, BCom storage. Our work opens future opportunities for harnessing collective effects in light-matter coupling for nanoscale
Science Leader in Quantum Science and Technologies energy capture, storage, and transport technologies.

Australia’s national science agency, CSIRO

ICQE 2023 promises a comprehensive line-up of speakers, an innovative program and first-
planning a packed agenda of science, food, arts, cafes and culture as your introduction to th
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Accelerating chemical reactions via quantum effects

“Scientists are intensely interested in CHEMICAL PROCESSES | RESEARCH UPDATE
what are known as quantum-enhanced Quantum superchemistry emerges in the laboratory
chemical reactions 7 A 2003

ug

Phys.org 2023

‘molecules sharing a quantum state
might produce accelerated chemical
reactions if those molecules were
‘coupled’ together and reacting as one”

sciencealert 2023

Atoms and molecules: Cheng Chin (r) and postdoctoral researcher Zhendong Zhang in the University of
Chicago laboratory where they and colleagues observed the first evidence of quantum superchemistry.
(Courtesy: John Zich/University of Chicago)
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Liquid drop models for determining nuclear excited states

Pd-106 nuclear molecule (vd-53 +vd-53) Nuclear molecule energy vs decay rate
including tunneling and daughter decays

* Bohr-Wheeler model predicts a (not very stable) symmetric nuclear molecule for Pd-106 near

40.7 MeV
. ..50. T
10 ) 140 | 3.
LDM model based on Lagrange interpolants . HUH
s X
S o AR
) (0] °o 0y f‘
|_— LDM model from Sierk (1986) 2 ol oIy W
= §50 AW
.S
o i 52
3 g eor . :
£ o {7 YPE model from Sierk (1986) o .
= 8 60 | + :l eeeh S o .
= ooy ‘Og.&"‘.*t 0.:"-." oo - Seo
2 wl te <t Y Wi le bl F T L e
st | YPE model based on quadratic surface model % i RRCE Sl fend by L
20
-10 0 L " L L n 1 L L L L I L L . i L L i .
10° 107 108 105 104 10° 102 107 10° 10' 102 10° 10¢ 10° 105 107 10° 10° 10 10" 1072
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For all the stable Pd isotopes
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Long-lived excited states in Pd available for excitation transfer

Pd-106*
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Intermediate variables

O O O nuclei 0SC magn. injl:‘ruclion 1012 02 molecules in PdD vacancies
o ey R N (U, = 150 eV, fluctuations +/- 5pm)
09 O Hamiltonian: ~ H = Z Mjc® + hwa'a + Z(—/U +B)4 + (—pj - B)- coupled to 106 Pd nuclei via magnon-nuclear
J J coupling (coupling strength V = 100 neV)

©0 0O

U e
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uTIP Python modeling of excitation transfer

fe

: JUpyter JUPYTER ~ FAQ  ¢/> = 0 )

nbviewer
In [37]: bra_labels, ket_labels = make_braket_labels(nmm_list)
Now let's plot the results using a helper function plot_prob that pulls together plotting code that we used in the last tutorial.

In [38]: plot_prob(P, times, ket_labels)
plt.title(f"2 TSS with {H_latex} ($\Delta E \\approx 1.9328%, $\omega=1$, $U=0.1%) (Fig 8)");

2 TSS with H= AE/2(0, + 05) + hw(a'a+ 1/2) + U(a' + a)(0y + 0y2) (AE=1.9328, w=1,U=0.1) (Fig 8)

1.0 4
0.8
0.6
2
E
3
[<]
&
0.4
0.2 A
https://github.com/project-
ida/two-state-quantum-
0.0 A
systems/
(') 20(’)00 40600 60600 80(')00 100'000
Time

‘il ' ‘ ° e Fig 8 shows exactly what we expected, namely down conversion - both TSS transition from "+" to "-" each giving of 2 bosons in the process i.e. |0, 4+, +) — |4, —, —). 45
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Intermediate variables

© O O nuclei osc magn. interaction 102 D, molecules in PdD vacancies
—N—

N

o 2 ,-/7\ < > (U, = 150 eV, fluctuations +/- 5pm)
© ¢ 6 Hamiltonian: ~ H = Z M;c® + hwa'a + Z(—/U *B)y + (—p - B)- coupled to 108 Pd nuclei via magnon-nuclear

J J coupling (coupling strength V = 100 neV)
© @ 3

volpye ~(
Dependent Transfer rate [2E \/ volmot 1A ®Pa-106 107 eV10717107%10""¢ :
variable: = fusion rate: I' = V/Np,V Npaos ;, = 54 < 100cV 1 V1012 v l()‘

Dicke enhancement
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Intermediate variables

© 0 0
00 0O

'™
00 B

Dependent
variable:

Intermediate
variables:

arpa-e

HAT'S PC

Hamiltonian:

Transfer rate

= fusion rate:

gram—

nuclei ,,s( magn. injl\ua(lion 1012 D, molecules in PdD vacancies
omm— ~ (U, = 150 eV, fluctuations +/- 5pm)
H = Z M;c” ‘+ h a'a + Z —j - B)+ + (—p; - B)- coupled to 106 Pd nuclei via magnon-nuclear
J coupling (coupling strength V = 100 neV)

(25 1/ Sopce "‘l ‘I’mw«» 10~ 7eV1071710-5107¢
= o/ Now i/ Nosrp—t ¢ 1\/1012\/1(0

24 x 10%eV

V / \ \ Dicke enhancement

#of nuclei Energy in DD proximity & Closeness of resonance between
coupled to oscillator mode screening potential D, (23.8 MeV) and lattice nuclei
oscillator

Excited plasmon D diffusion Lattice structure
& phonon modes rate (vacancy content)
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Intermediate variables

magn.interaction
-

uclei 08scC
© 00 e o .
©) @\O Hamiltonian: H = Z M;c* + hwa'a + Z(—!U - B)y + (—pj - B)-
J J

© 00

10'2 D, molecules in PdD vacancies

(Ug = 150 eV, fluctuations +/- S5pm)

coupled to 108 Pd nuclei via magnon-nuclear
coupling (coupling strength V = 100 neV)

volnye o ~G1 V_ >d-106 T 110-17T10-61n-"7-1/
¢ "lzEPraos 107 7eV10 107%10 eV | V0% vigel
24 x 105eV h

l_Y_J

Dicke enhancement

v
Dependent Transfer rate — = (25 \/ v
variable: = fusion rate: I' = V/Np,V Npaos h
#of nuclei Energy in DD proximity & Closeness of resonance between
coupled to oscillator mode  screening potential D, (23.8 MeV) and lattice nuclei
oscillator
Intermediate
variables: ™
Excited plasmon D diffusion Lattice structure
& phonon modes rate (vacancy content)
Ind dent _ ) Temperature & pressure  Microstructure of Isotopic composition
n gpen en Lager flocal Laser intensity, untreated sample  of untreated sample
variables: point size wavelength,

pulse length & freq.
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All the building blocks are there and accepted

ARTICLES o ol
photonics

https://doi.org/10.1038/541566-017-0013-3

Rabi oscillations of X-ray radiation between two
nuclear ensembles

Johann Haber', Xiangjin Kong??, Cornelius Strohm', Svenja Willing', Jakob Gollwitzer', Lars Bocklage',
Rudolf Riiffer*, Adriana Palffy?* and Ralf Réhlsberger'™

The realization of the strong coupling regime between a single cavity mode and an electromagnetic resonance is a centrepiece
of quantum optics. In this regime, the reversible exchange of a photon bet the two comp ts of the system leads to so-
called Rabi oscillations. Strong coupling is used in the optical and infrared regimes, for instance, to produce non-classical states
Rabi oscillations of

c d

bed by an effective
‘> €950, 02/ /‘\ |g]e20 Oz>

1e Rabi oscillations
ictrum. Our results

91920102>

arpa-e
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Article

Coherent X-ray-optical control of nuclear

excitons

https://doi.org/10.1038/s41586-021-03276-x
Received: 22 October 2018

Accepted: 2 December 2020
Published online: 17 February 2021

Open access

® Check for updates

Kilian P. Heeg', Andreas Kaldun', Cornelius Strohm?, Christian Ott', Rajagopalan Subramanian',

Dominik Lentrodt', Johann Haber?, Hans-Christian Wille?, Stepha 1. Rudolf Riiffer®,
Christoph H. Keitel', Ralf Rohlsberger®***”, Thomas Pfeifey’& Jorg Evers'™

Coherent control of quantum dynamicsis key to amultitude of fundamental studies
and applications'. Inthe visible or longer-wavelength domains, near-resonant light
fields have become the primary tool with which to control electron dynamics®. Recently,
coherentcontrolin the extreme-ultraviolet range was demonstrated’, witha
few-attosecond temporal resolution of the phase control. At hard-X-ray energies (above
5-10kiloelectronvolts), Massbauer nuclei feature narrow nuclear resonances due to
their recoilless absorption and emission of light, and spectroscopy of these resonances
is widely used to study the magnetic, structural and dynamical properties of matter*. It
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Coherent control of collective nuclear quantum states
via transient magnons

Lars Bocklage'%*, Jakob Gollwitzer', Cornelius Strohm', Christian F. Adolff', Kai Schlage’,
llya Sergeev', Olaf Leupold', Hans-Christian Wille', Guido Meier®?, Ralf Rohlsberger'%*>¢

Ultrafast and precise control of quantum systems at x-ray energies involves photons with oscillation periods be-
low 1 as. Coherent dynamic control of quantum systems at these energies is one of the major challenges in hard
X-ray quantum optics. Here, we demonstrate that the phase of a quantum system embedded in a solid can be
coherently controlled via a quasi-particle with subattosecond accuracy. In particular, we tune the quantum phase
of a collectively excited nuclear state via transient magnons with a precision of 1 zs and a timing stability below
50 ys. These small temporal shifts are monitored interferometrically via quantum beats between different
hyperfine-sblit levels. The exneriment demonstrates zentosecond interferometrv and shows that transient quasi-
particles e| nvironments.
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Chapter 7
Giant Nuclear Systems of Molecular Type

Valery Zagrebaev and Walter Greiner

7.1 Introduction

Cluster structure is very often set off against the shell structure of light and
medium nuclei. However the appearance of clusters themselves (compact pieces of
nuclear matter) is conditioned just by the shell effects. In light nuclei these clusters
are mainly alpha-particles. In heavy nuclear systems tightly packed nuclei (such as
3280 or *"*Pb) may lead to energetically favorable two (and even three) center
configurations. These cluster configurations play an important role both in the
structure of heavy nuclear systems and in the low-energy nuclear dynamics.
The asymmetric nuclear fission (see, for example, Ref. [1]), the heavy-ion
radioactivity [2, 3], the shape isomeric states of heavy nuclei [4] and the true
ternary fission of superheavy nuclei (see below) are the manifestations of such
kind of clusterization. Our studies of fusion-fission reactions and multi-nucleon
transfer processes in low-enerev heavy ion collisions demonstrated that the shell
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Superradiance of an ensemble of nuclei excited by

a free electron laser

Aleksandr |. Chumakov©'?*, Alfred Q. R. Baron©3*, llya Sergueev*, Cornelius Strohm*, Olaf Leupold?,
Yuri Shvyd'ko®, Gennadi V. Smirnov?, Rudolf Riiffer’, Yuichi Inubushi®, Makina Yabashi®3,

Kensuke Tono®, Togo Kudo® and Tetsuya Ishikawa?®

In 1954 Dicke predicted the accelerated initial decay of mul-
tiple atomic excitations’, laying the foundation for the concept
of superradiance. Further studies®* suggested that emission
of the total energy was similarly accelerated, provided that
the system reaches the inversion threshold. Superradiant
emission of the total energy has been confirmed by numer-
ous studies*™, yet the acceleration of the initial decay has
not been experimentally demonstrated. Here we use resonant
diffraction of X-rays from the Méssbauer transition” of ’Fe
nuclei to investigate superradiant decay, photon by photon,
along the entire chain of the de-excitation cascade of up to
68 simultaneous coherent nuclear excitations created by a
pulse of an X-ray free-electron laser. We find agreement with
Dicke's theory' for the accelerated initial decay as the number
of excitations is increased. We also find that our results are in
agreement with a simple statistical model, providing a neces-
sary baseline for discussing further properties of superradi-
ance. within and hevond the low-excitation recime.

Even when N«n, this is a very large N-fold acceleration.
Therefore, the acceleration of the initial decay predicted by Dicke
can be studied even in the low-excitation regime.

We studied the accelerated initial decay of multiple coher-
ent nuclear excitations created by an X-ray pulse of the SPring-8
Angstrom Compact free electron LAser (SACLA)", the only source
that can presently provide temporally and spatially coherent pulses
of many photons within the bandwidth of the convenient 14.4keV
nuclear transition of “'Fe. For X-rays, the small-system limit is fun-
damentally excluded because the wavelength is similar to inter-
atomic distances. However, one can create a phased excitation of
an extended system. The ideal X-ray lattice™ is offered by atomic
periodicity, and the ‘seeded coherence™ is provided in nuclear reso-
nance diffraction conditions". Similar to the ‘collective dipole’ of
atoms coupled to the light field in an infrared optical cavity'*", the
‘compound’ excited state'*"” of an ensemble of nuclei under diffrac-
tion"” or forward-scattering'™'" conditions leads to enhancement
of emission and strano ‘sneed-nn’ of the callective resnance! In
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Abstract. Coherent hopping of excitation relies on quantum coherence
over physically extended states. In this work, we consider simple models
to examine the effect of symmetries of delocalized multi-excitation states
on the dynamical timescales, including hopping rates, radiative decay and
environmental interactions. While the decoherence (pure dephasing) rate of
an extended state over N sites is comparable to that of a non-extended state,
superradiance leads to a factor of N enhancement in decay and absorption rates.
In addition to superradiance, we illustrate how the multi-excitonic states exhibit
‘supertransfer’ in the far-field regime—hopping from a symmetrized state over
N sites to a symmetrized state over M sites at a rate proportional to MN. We
argue that such symmetries could play an operational role in physical systems
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