

Probing neutrons and purported fission daughter products from gas-loaded, laser-irradiated metal-hydrogen targets

Principal Investigator: Yet-Ming Chiang, Professor, MIT

Presentation by Florian Metzler, Research Scientist, MIT

Washington, DC September 8, 2023

ARPA-E LENR: Massachusetts Institute of Technology

Massachusetts Institute of Technology

Project Title:

Probing neutrons and purported fission daughter products from gas-loaded, laser-irradiated metalhydrogen targets

PI:

Yet-Ming Chiang ychiang@mit.edu

Laser irradiation + 23.8 MeV excitation neutrons 60 +7.1 MeV kinet 000 0 Neutro (w/ D₂), 00 0 0 0 0 000 000 0 00 0 0 Neutron bursts 00000 0 0 0 0 0 $\odot \odot \odot$ 00 0 0 1102Pd*> + 47.6 MeV excitation 23.8 MeV mass defer +(15.8+47.6) MeV kinet 1111 53964.8 MeV ma

Elemental production

Project Outcomes:

Unequivocal demonstration of the presence or absence of LENR phenomena through replication experiments with additional characterization and detection methods

Key takeaway: anomalous emitted radiation and surface isotopes have been reported in metal deuterides under low power laser irradiation and should be revisited with improved radiation detection and isotopic characterization

ARPA-E | Nuclear

Hypothesis

Hypothesis:

Nuclear reactions can occur in metal deuterides at near-ambient temperature and pressure conditions under low-power laser irradiation (Beltyukov 1991; Nassissi 1999; Mastromatteo 2016; Ushikoshi 2020; Barrowes 2022)

More specifically:

- DD and HD fusion reactions can be accelerated by nonradiatively transferring corresponding transition energies (23.8 MeV and 5.5 MeV respectively) to resonant excited states of heavy lattice nuclei (e.g. Pd and Ti isotopes).
- Such transfer is enabled by shared phonon and plasmon modes that cause temporary delocalization
 of nuclear states in a coherence domain (delocalized nuclear excitons).
- Dicke enhancement can accelerate what are initially low transfer probabilities due to weak couplings.

Overview of experimental setup

Variables overview

Reactor design

Reactor design (cont'd)

Preliminary experiments

At US Army EDRC

At MIT

Data Acquisition

Measurement	Recording Method	Settings	Latency	Storage Media
SEM-EDS surface maps	Bitmaps	TBD	Before and after each experiment	Dropbox or Google Drive
Isotopic detection	Gamma spectra from Neutron activation analysis (NAA) and mass spectra from MS	TBD	Before and after each experiment	Dropbox or Google Drive
Radiation detection (n)	Neutron counts per second from ³ He proportional counter & liquid scintillation detector	Use of moderator to optimize sensitivity for 1-10 MeV neutrons	Continual data collection w/ time resolution of counts per second or higher	Local computer + Postgres time series database on an MIT- based server; Dropbox or Google Drive backup
Radiation detection (γ)	Spectra and counts >100 keV from HPGe and Nal spectrometers	Focus on 100 keV to 5 MeV range	Continual data collection w/ time resolution of counts per min or higher	Local computer + Postgres time series database on an MIT- based server; Dropbox or Google Drive backup

Reports of surface changes in the literature

Reports of surface changes in the literature (cont'd)

Barrowes 2022, ICCF24

SEM-EDS surface mapping in collaboration with Texas Tech

Reports of neutron bursts in the literature

Menlove et al. 1990, Journal of Fusion Energy

Reports of neutron bursts in the literature (cont'd)

Figure 14. Screen shot of the neutron monitoring PC showing a massive neutron emission from reactor 1 after the experiment with a 405 nm laser.

CHANGING WHAT'S POSSIBLE

Mastromatteo 2020, JCMNS

Reports of neutron and gamma bursts correlated with irradiation

Beltyukov et al. 1991, Fusion Technology

Gamma emission on the order of 5 x 10^3/s and neutron emission on the order of 2 x 10^2 n/s in bursts of <0.5 s

(exceeding gamma background by 2x and neutron background by 18x)

24/7 data streaming with universal time stamps

Cloud-based time series optimized Postgres database

Adminer 4.7.3 4.8.1	Select	: neutro	on1						
DB: experiments v Schema: public v	Select data Show structure Alter table New item								
SQL command Import Export Create table	time ✓ ✓ descending 51 Select !								
select codep_ps	SELECT * FR	OM "neutron1'	'LIMIT 51 (0.001 s) E	dit					
select cp a	Modify		time	channels	id				
select cp_r	□ edit	2020-01-1	0 15.52.44 533429	101	180110				
select current1		2020-01-1	0 15.52.44.555429	105	100119				
select digtempsensors2		2020-01-1	0 15:53:07.17187	{0}	180120				
select digtempsensors3	🗌 edit	2020-01-1	0 15:53:12.445233	{0}	180121				
select rukai_ps1	🗌 edit	2020-01-1	0 15:53:17.704783	{0}	180122				
select gas_now_1	🗌 edit	2020-01-1	0 15:53:22.985357	{0}	180123				
select gm2	□ edit	2020-01-1	0 15.53.28 272824	501	180124				
select h_d_lvl_1		2020 01 1	0 15.55.20.272024	(0)	100124				
select hydrogen1		2020-01-1	0 15:53:33.535181	{0}	180125				
select keithley_ps	🗌 edit	2020-01-1	0 15:53:38.80538	{0}	180126				
select multimeter?	🗌 edit	2020-01-1	0 15:53:44.107407	{0}	180127				
select multimeter3	🗌 edit	2020-01-1	0 15:53:49.365995	{0}	180128				
select multimeter_trackers1	edit	2020-01-1	0 15:53:54 643854	103	180129				
select multimeter_trackers2		2020 01 1	0 15.55.54.045054	(0)	100125				
select neutron1		2020-01-1	0 15:53:59.901/35	{0}	180130				
select neutron_sean	🗌 edit	2020-01-1	0 15:54:05.169946	{0}	180131				
select optimaloadcell	🗌 edit	2020-01-1	0 15:54:10.43189	{0}	180132				
select osprev	🗌 edit	2020-01-1	0 15:54:15.722133	{0}	180133				
select phprobe	🗆 edit	2020-01-1	0 15:54:21.082643	{0}	180134				
select precisionscale1		2020 01 1	0 15:51:21:002010	(0)	100125				
select pressure		2020-01-1	0 15:54:20.377788	{0}	160135				
select rotstage	🗌 edit	2020-01-1	0 15:54:31.642518	{0}	180136				
select target amps 1	🗌 edit	2020-01-1	0 15:54:36.955902	{0}	180137				
select target temp 1	🗌 edit	2020-01-1	0 15:54:42.221534	{0}	180138				
select tempandlight	□ edit	2020-01-1	0 15:54:47.497802	{0}	180139				
select tempcontrol1		2020-01 1	0 15:54:52 755105	(0)	180140				
select temps_fukai1		2020-01-1	0 13.34.32.755105	103	100140				
select thermistoria		2020-01-1	0 15:54:58.023233	{0}	180141				
select x123sdd	-Page-		Whole result	[1odify-	Selected (0)-		Export (~ 1,266,1	76) –
select x123sdd2	1234	5 last	□~ 1.266.176	rows	Save	Edit Clone	Delete		
and a state of the second second					0410		201010		

Database can accommodate scalar and vector data

Adminer 4.7.3 4.8.1	Select	: ortec	
DB: experiments v Schema: public v	Select da	ta Show structure	Alter table New item
SQL command Import Export Create table			50 Select
select coden ins	SELECT * FR	OM "ortec" LIMIT 50 (0.014	is) Edit
select codep_ps2	Modify	time	
select cp_a	🗌 edit	2019-12-30 20:21:16	$\{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,$
select current1	🗌 edit	2019-12-30 20:22:17	$\{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,$
select digtempsensors2	🗌 edit	2019-12-30 20:23:19	$\{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,$
select digtempsensors3	🗌 edit	2019-12-30 20:24:21	$\{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,$
select gas flow 1	🗌 edit	2019-12-30 20:25:23	{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
select gm1	🗌 edit	2019-12-30 20:26:24	{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
select b d lyl 1	🗌 edit	2019-12-30 20:27:26	{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
select hydrogen1	🗆 edit	2019-12-30 20:28:28	{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
select keithley_ps	🗆 edit	2019-12-30 20:29:30	$\{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,$
select multimeter2	🗆 edit	2019-12-30 20:30:31	{0.0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
select multimeter3	🗆 edit	2019-12-30 20:31:33	{0.0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
select multimeter_trackers1	□ edit	2019-12-30 20:32:35	{0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.
select multimeter_trackers2	□ edit	2019-12-30 20:33:37	{0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.
select neutron_sean	edit	2019-12-30 20:34:38	C 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
select optimaloadcell	- edit	2019-12-30 20:35:40	
select osprey	edit	2019-12-30 20:36:42	
select phprobe		2019-12-30 20:37:44	
select precisionscale1	- edit	2019-12-30 20:37:44	
select rotstage	- edit	2019-12-30 20:30:43	
select rotstage2	- edit	2019-12-30 20:39:47	
select target_amps_1 select target_temp_1		2019-12-30 20:40:49	
select tempandlight	- edit	2019-12-30 20:41:51	
select tempcontrol1		2019-12-30 20:42:52	{u,u,u,u,u,u,u,u,u,u,u,u,u,u,u,u,u,u,u,
select thermistor1		2019-12-30 20:43:54	{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
select x123	Page	Whole re	sult Modify Selected (0) Export (~ 196,964)
select x123sdd select x123sdd2	1234	5 last 🗌 ~ 196,	,964 rows Save Edit Clone Delete

Example: neutron background

show editor | hide editor | clear cache and refresh

Neutrons lab

Example: neutron burst

show editor | hide editor | clear cache and refresh

Neutrons lab

20

Example: plotting data from different data source

time: not selected

✓— Temp1
✓— Temp2

Example: plotting data from different data source (cont'd)

Ortec spectrum

Obtaining low-cost large-area He-3 neutron detectors

10x³He Neutron Detector Bank

\$5,995.00

Shielding to reduce background (neutrons, gammas)

Working with Igor

Toward a statistical framework for neutron/gamma detection

- Simulation of 100 experiments with 536 events and mean = 4.03008 (band == 2 sigma)
- Experiment with 536 events and mean 4.03008

- Simulation of 100 experiments with 200 events and mean = 4.25532 (band == 2 sigma)
- Experiment with 200 events and mean 4.25532

,

,

Toward a statistical framework for isotopic analysis

Promising isotopes:

Toward a statistical framework for isotopic analysis (cont'd)

The Chemical and Isotopic Mass Spectrometry (CIMS) Team in ORNL's Nuclear Analytical Chemistry and Isotopics Laboratory Group specializes in ultra-trace analytical measurements. We develop methods and technologies and make measurements in support of national and international nuclear safeguards, security, nonproliferation, verification, and forensics missions. We perform vital measurements in support of the stable and radioisotope production efforts at ORNL. The CIMS team leads the multi-lab DOE/DOS program to provide analytical support to the IAEA's Network of Analytical Laboratories for analysis of samples collected during onsite inspections of nuclear facilities and heads the analytical laboratory in the Mobile Uranium Facility, which helps secure nuclear material worldwide. In recent years members of the CIMS team have been recognized for their important national and international contributions with multiple Secretary of Energy Achievement Awards and the coveted DOE/NNSA Joule.

Framing

Fusion reaction viewed as a state transition to a lower energetic state, hindered by the reconfiguration of nucleons.

Analogous to how a state transition at the atomic level is hindered by the reconfiguration of electrons.

Conventionally expected but hopelessly slow:

Conventionally expected but hopelessly slow:

Terhune & Baldwin PRL 1965

NUCLEAR SUPERRADIANCE IN SOLIDS*

J. H. Terhune and G. C. Baldwin

Advanced Technology Laboratories, General Electric Company, Schenectady, New York (Received 16 February 1965)

A general theory of coherent spontaneous gamma-ray emission from an assemblage of isomeric nuclei in a perfect crystalline solid has been developed. The solid, characterized by internal energy states of the nuclei, by the lattice vibrations, and by the electromagnetic field, is treated as an integrated quantized system rather than as a number of noninteracting nuclei.¹⁻⁴ Transition probabilities are calculated by the usual methods of first-order timedependent perturbation theory.

Coherent spontaneous emission of radiation from a gas has been discussed by Dicke.⁵ It was shown that transitions exist for which the radiation rates, line shapes, and linewidths are all different from the corresponding quantities for an assemblage of noninteracting radiators. In particular, certain states were predicted that possess radiation rates much greater than normal because of correlations among the internal motions of the various molecules composing the system.

In a solid composed of N identical two-level nuclei in a perfect crystal lattice at a uniform and low temperature, correlations in the internal motions of the radiators are more probable than in the case of a gas. Furthermore, the interactions among members of the solid system are much stronger than in the gas, because of the coupling between neighbors in the lattice. The usual assumption¹⁻⁴ that each nucleus radiates independently of the states of other nuclei in the system is incompatible with the coupling of the nuclei through the common electromagnetic and phonon fields. Calculations of the spontaneous radiation rate for a solid system in which the nuclei are a priori assumed independent preclude the possibility of coherent spontaneous gamma emission by assumption. The present analysis is free from this inconsistency. Finally, the wavelength of the radiation is comparable with the spacing of nuclei in the lattice.

Using the method of Dicke,⁵ the nuclear states are described by a vector model in which the vector orientation is quantized in energy space in analogy with fermion spin. The nuclei are assumed identical, in a uniform and field-free environment, with only two nondegenerate internal energy states coupled by a radiative transition. The lattice is assumed harmonic with nearest-neighbor interactions only; the phonon spectrum is approximated by the Debye model. The crystal is considered in the adiabatic approximation, and is assumed to be at rest with respect to the observer.

In the Hamiltonian for this system,

 $H = H_{nuclei} + H_{lattice} + H_{radiation} + H',$

all terms except the interaction term H' are independent of the time. The latter is

$$H' = -\frac{1}{2} \sum_{k} [(\vec{\mathbf{a}}_{k} \cdot \vec{\mathbf{e}})R_{k+} + (\vec{\mathbf{a}}_{k} \ast \cdot \vec{\mathbf{e}} \ast)R_{k-}],$$

in which \vec{a}_k^* and \vec{a}_k are photon creation and destruction operators, respectively, k characterizes a mode of the electromagnetic field, \vec{e} and \vec{e}^* were defined in reference 5, and the nuclear excitation and de-excitation operators

Excitation transfer

Quantum state transfer through activation of couplings

Frimmer & Novotny (2014) *Am. Journal of Physics*

Two qubits implemented in silicon.

CHANGING WHAT'S POSSIBLE

Zhang et al. (2018) Chinese Physics B

Classical analog to two coupled quantum systems

Briggs et al. (2011) *Physical Review E* Eisfeld et al. (2012) *Physical Review E*

Mechanical analogs for excitation transfer

33

Phonons/plasmons as source of couplings

Phonons in Ge

Cremons et al. 2016, Nat. Commun.

Delocalized excited states as intermediate steps

coherent

incoherent

35

Superradiance: coherent acceleration of emission

Chumakov et al. (2018) Nature Physics

What determines nuclear energy levels & reaction products

Nuclear molecule literature:

Zagrebaev & Greiner 2010, Springer

Low-Z elements from near-symmetric Pd fission

Vaquero-Stainer (2017), *Imperial College London* Werren et al. (2023), *PRX Energy*

b

(c)

Quantum ratcheting

The Emergence of Quantum Energy Science

Metzler et al. 2022 https://arxiv.org/abs/2303.01632

First conference on "Quantum Energy"

Home Registration *	86 days 17 hrs 9 min left to the Program • Sponsorship Info	Hosted by CSIRO		
Late Breaking Posters Nov	w Opened: Submit Now	Key Dates Call for abstracts Closed		
uantum energy i	meets tomorrow	Registrations open Open		
o present the International Conference ddressing our global energy challenges	SCIENCE ADVANCES RESE	ARCH ARTICLE		
ught leaders from around the world to nergy landscape for the future.	PHYSICS			
ental principles, and applied engineerin	Superabsorption in an organic microcavity: Toward a quantum battery			
Australia's Chief Scientist, and renowned physicist, Dr Cathy Foley AO PSM will deliver the c by six other <u>esteemed keynote speakers</u> including Prof Gerard Milburn, Dr Alexia Auffèves a		James Q. Quach ¹ *, Kirsty E. McGhee ² , Lucia Ganzer ³ , Dominic M. Rouse ⁴ , Brendon W. Lovett ⁴ , Erik M. Gauger ⁵ , Jonathan Keeling ⁴ , Giulio Cerullo ³ , David G. Lidzey ² , Tersilla Virgili ³ *		
akers, an innovative program and first- s and culture as your introduction to th <u>reserve your spot today</u> . b, BEng (Hons), BCS, BCom <i>e and Technologies</i>	The rate at which matter emits or absorbs light can be modified by its environment, as markedly exemplified the widely studied phenomenon of superradiance. The reverse process, superabsorption, is harder to demons because of the challenges of probing ultrafast processes and has only been seen for small numbers of atom central idea—superextensive scaling of absorption, meaning larger systems absorb faster—is also the key underpinning quantum batteries. Here, we implement experimentally a paradigmatic model of a quantum batterious at femtosecond resolution to demonstrate superextensive charging rates and storage capacit agreement with our theoretical modeling. We find that decoherence plays an important role in stabilizing en storage. Our work opens future opportunities for harnessing collective effects in light-matter coupling for nano energy capture, storage, and transport technologies.			
	Home Registration Category Constraints and culture as your introduction to the constraints and culture as your introductio	B6 days 17 hrs 9 min Left to the Leme Registration Correction Late Breaking Posters Now Opened: Submit Now Late Breaking Posters Now Opened: Submit Now See you at the MCC Correction Correction and Conference ddressing our global energy challenges ught leaders from around the world to nertal principles, and applied engineeric Or Cathy Foley AO PSM will deliver the fof Gerard Milburn, Dr Alexia Auffreises eakers, an innovative program and firstes and culture as your introduction to exters, an innovative program and firstes and culture as your introduction to exters, an innovative program and firstes and culture as your introduction to exters, an innovative program and firstes and culture as your introduction to exters, an innovative program and firstes and culture as your introduction to exters, an innovative program and firstes and culture as your introduction to exters, an innovative program and firstes and culture as your introduction to exters, an innovative program and firstes and culture as your introduction to exters, an innovative program and firstes and culture as your introduction to exters, an innovative program and firstes and culture as your introduction to exters, and innovative program and firstes and culture as your introduction to <		

CHANGING WHAT'S POSSIBLE

Accelerating chemical reactions via quantum effects

"Scientists are intensely interested in what are known as 'quantum-enhanced' chemical reactions"

Phys.org 2023

"molecules sharing a quantum state might produce accelerated chemical reactions if those molecules were 'coupled' together and reacting as one"

sciencealert 2023

CHEMICAL PROCESSES | RESEARCH UPDATE

Quantum superchemistry emerges in the laboratory 23 Aug 2023

Atoms and molecules: Cheng Chin (r) and postdoctoral researcher Zhendong Zhang in the University of Chicago laboratory where they and colleagues observed the first evidence of quantum superchemistry. (Courtesy: John Zich/University of Chicago)

Liquid drop models for determining nuclear excited states

Pd-106 nuclear molecule (Vd-53 + Vd-53)

 Bohr-Wheeler model predicts a (not very stable) symmetric nuclear molecule for Pd-106 near 40.7 MeV

Nuclear molecule energy vs decay rate including tunneling and daughter decays

For all the stable Pd isotopes

Hagelstein 2023, ICCF-25

Long-lived excited states in Pd available for excitation transfer

 $10^{12} D_2$ molecules in PdD vacancies ($U_e = 150 \text{ eV}$, fluctuations +/- 5pm) coupled to 10^6 Pd nuclei via magnon-nuclear coupling (coupling strength V = 100 neV)

QuTIP Python modeling of excitation transfer

https://github.com/projectida/two-state-quantumsystems/

All the building blocks are there and accepted

t (ns)

All the building blocks are there and accepted

SCIENCE ADVANCES | RESEARCH ARTICLE

PHYSICS

Coherent control of collective nuclear quantum states via transient magnons

Lars Bocklage^{1,2}*, Jakob Gollwitzer¹, Cornelius Strohm¹, Christian F. Adolff^{1,2}, Kai Schlage¹, Ilya Sergeev¹, Olaf Leupold¹, Hans-Christian Wille¹, Guido Meier^{3,2}, Ralf Röhlsberger^{1,2,4,5,6}

Ultrafast and precise control of quantum systems at x-ray energies involves photons with oscillation periods below 1 as. Coherent dynamic control of quantum systems at these energies is one of the major challenges in hard x-ray quantum optics. Here, we demonstrate that the phase of a quantum system embedded in a solid can be coherently controlled via a quasi-particle with subattosecond accuracy. In particular, we tune the quantum phase of a collectively excited nuclear state via transient magnons with a precision of 1 zs and a timing stability below 50 ys. These small temporal shifts are monitored interferometrically via quantum beats between different hyperfine-split levels. The experiment demonstrates zeptosecond interferometry and shows that transient quasiparticles e

Chapter 7 Giant Nuclear Systems of Molecular Type

Valery Zagrebaev and Walter Greiner

7.1 Introduction

Cluster structure is very often set off against the shell structure of light and medium nuclei. However the appearance of clusters themselves (compact pieces of nuclear matter) is conditioned just by the shell effects. In light nuclei these clusters are mainly alpha-particles. In heavy nuclear systems tightly packed nuclei (such as ¹³²Sn or ²⁰⁸Pb) may lead to energetically favorable two (and even three) center configurations. These cluster configurations play an important role both in the structure of heavy nuclear systems and in the low-energy nuclear dynamics. The asymmetric nuclear fission (see, for example, Ref. [1]), the heavy-ion radioactivity [2, 3], the shape isomeric states of heavy nuclei [4] and the true ternary fission of superheavy nuclei (see below) are the manifestations of such kind of clusterization. Our studies of fusion–fission reactions and multi-nucleon transfer processes in low-energy heavy ion collisions demonstrated that the shell

All the building blocks are there and accepted

physics

LETTERS https://doi.org/10.1038/s41567-017-0001-z

Superradiance of an ensemble of nuclei excited by a free electron laser

Aleksandr I. Chumakov^{1,2*}, Alfred Q. R. Baron^{3*}, Ilya Sergueev⁴, Cornelius Strohm⁴, Olaf Leupold⁴, Yuri Shvyd'ko⁵, Gennadi V. Smirnov², Rudolf Rüffer¹, Yuichi Inubushi⁶, Makina Yabashi³, Kensuke Tono⁶, Togo Kudo³ and Tetsuya Ishikawa³

In 1954 Dicke predicted the accelerated initial decay of multiple atomic excitations¹, laying the foundation for the concept of superradiance. Further studies²⁻⁴ suggested that emission of the total energy was similarly accelerated, provided that the system reaches the inversion threshold. Superradiant emission of the total energy has been confirmed by numerous studies4-12, vet the acceleration of the initial decay has not been experimentally demonstrated. Here we use resonant diffraction of X-rays from the Mössbauer transition¹³ of ⁵⁷Fe nuclei to investigate superradiant decay, photon by photon, along the entire chain of the de-excitation cascade of up to 68 simultaneous coherent nuclear excitations created by a pulse of an X-ray free-electron laser. We find agreement with Dicke's theory¹ for the accelerated initial decay as the number of excitations is increased. We also find that our results are in agreement with a simple statistical model, providing a necessary baseline for discussing further properties of superradiance, within and beyond the low-excitation regime.

Even when $N \ll n_a$, this is a very large N-fold acceleration. Therefore, the acceleration of the initial decay predicted by Dicke can be studied even in the low-excitation regime.

We studied the accelerated initial decay of multiple coherent nuclear excitations created by an X-ray pulse of the SPring-8 Angstrom Compact free electron LAser (SACLA)¹⁴, the only source that can presently provide temporally and spatially coherent pulses of many photons within the bandwidth of the convenient 14.4 keV nuclear transition of ⁵⁵Fe. For X-rays, the small-system limit is fundamentally excluded because the wavelength is similar to interatomic distances. However, one can create a phased excitation of an extended system. The ideal 'X-ray lattice¹⁰ is offered by atomic periodicity, and the 'seeded coherence¹² is provided in nuclear resonance diffraction conditions¹⁴. Similar to the 'collective dipole' of atoms coupled to the light field in an infrared optical cavity¹⁰⁻¹², the 'compound' excited state^{16,12} of an ensemble of nuclei under diffraction¹⁵ or forward-scattering^{16,16} conditions leads to enhancement of emission and strong 'sneed-1m' of the collective resones¹²⁻²³. **New Journal of Physics**

The open-access journal for physic

Symmetry-enhanced supertransfer of delocalized quantum states

Seth Lloyd^{1,2,4} and Masoud Mohseni^{2,3}

¹ Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA ² Center for Extreme Quantum Information Theory, Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA

³ Center for Excitonics, Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA E-mail: slloyd@mit.edu

New Journal of Physics **12** (2010) 075020 (10pp) Received 26 February 2010 Published 23 July 2010 Online at http://www.njp.org/ doi:10.1088/1367-2630/12/7/075020

Abstract. Coherent hopping of excitation relies on quantum coherence over physically extended states. In this work, we consider simple models to examine the effect of symmetries of delocalized multi-excitation states on the dynamical timescales, including hopping rates, radiative decay and environmental interactions. While the decoherence (pure dephasing) rate of an extended state over N sites is comparable to that of a non-extended state, superradiance leads to a factor of N enhancement in decay and absorption rates. In addition to superradiance, we illustrate how the multi-excitonic states exhibit 'supertransfer' in the far-field regime—hopping from a symmetrized state over N sites to a symmetrized state over M sites at a rate proportional to MN. We argue that such symmetries could play an operational role in physical systems based on the competition between symmetry-anhanced interactions and localized

