

Nanostructured Pd-ANF Composites for Controlled LENR Exploitation

Dr. Drew Vecchio, Chemical Engineer, Amphionic LLC Dr. Mark Hammig, Nuclear Engineer, Amphionic LLC

Public Release Slide

Amphionic

Project Title: Nanostructured Pd-ANF Composites for Controlled LENR Exploitation

> PI: Drew Vecchio vecchio@amphionic.com

Project Outcomes:

Define the nuclear processes at the core of potential low-energy nuclear reactions from D-loaded Pd

Key takeaway: Pd nanocomposites with in-situ radiation detectors enable real-time characterization of the energetic emission of any present mass-energy conversions

×10⁻³

1.5 Real-time

characterization of energetic emissions pre D (48 hr) post D (96 hr)

Bonding of Pd NPs upon the

Valve

geometi

template with controlled nanoscale

Hypothesis

- Utilizing a variety of ion/photon/neutron detectors, in-situ real-time measurements of any energetic emission occurring from D-loaded Pd
- Composites formed of nanoparticles of Pd loaded within an aramid nanofiber (ANF) matrix maximizes nanocracks where LENR is claimed to occur
- Measurements:
 - Pre-experimental measurements
 - Ion/radiation background, Pd-ANF resistance, Pd-ANF thermogravmetric data
 - Active-experimental measurements
 - In-situ ion/photon detection, external neutron detection, pressure
 - Post-experimental measurements
 - PdD_x-ANF resistance
- Detectors
 - Silicon-PIN (550µm): ions, photon (optical, x-rays, gamma-rays)
 - 1.3% resolution at 356 keV
 - High Purity Germanium (HPGe, 1" x 3"): gamma-rays
 - < 1% resolution at 662 keV
 - Cs₂LiLaBr_{4.8}Cl_{1.2}:Ce (CLLBC:Ce, 1"x1"): neutrons, gamma-rays
 - 3.2% resolution at 662 keV

Experimental Setup

Data Acquisition

Measurement	Recording Method	Settings	Latency	Storage Media
High-energy lons	 Adjacent Si-PIN <i>in situ</i> PbTe NPs 	(Si) 1 cm ² x 500 μ m V _{bias} = 70 V, shaping time 500 ns, G = 20 (PbTe) V _{bias} = 300 V, shaping time 500 ns, G = 500	< µS	Hard drive (Non-volative memory (NVM)) and cloud
Gamma-rays	 Adjacent Si PIN in situ PbTe NPs, HPGe, CLLBC scintillator (1" x 1"), GAGG(Ce) Imager (2" x 2" x 2 cm pixelated array) 	(HPGe) 3" x 3" CLLBC coupled to SiPM (~20 V bias) GAGG(Ce) coupled to SiPM (~32 V bias)	< µS	NVM and cloud
Neutrons	1) CLLBC scintillator 1" x 1", 2) GAGG(Ce) Imager (1" x 1" x 2 cm pixelated array)	CLLBC coupled to CAEN digitizer with PSD	< 10 µs	NVM and cloud
Hydrogen Loading	 Resistance of Pd-composite, Pressure of test chamber. 	Resistance bridge connected to Arduino. Pressure sensor coupled to Arduino	1 s	NVM and cloud
Temperature of sample	1) Thermocouple and thermistors (connected to thermal heating element)	Heater/temperature controller (TC300 from Thorlabs) coupled to resistive cartridge heater and thermocouple)	1s	NVM and cloud

Modeling

- Monte-Carlo Neutral-Particle transport code (MCNP)
 - MC gamma-ray and neutron transport and spectroscopic detection
- CASINO
 - QMC electron transport
- Penetration and ENErgy LOss of Positrons and Electrons (PENELOPE)
 - MC electron-photon transport and attenuation
- Stopping and Range of Ions in Matter (SRIM)
 - MC charged particle transport and attenuation

Initial Test Plan

- Develop Pd nanoparticle recipe book, with control over particle size
- Successfully incorporate Pd NPs to aramid nanofiber matrix, forming composite with large Pd surface area and high density of nanocracks, believed to form the NAE
- Construct the detector setup, and validate with known particle sources
 - ²⁴¹Am, ¹³³Ba, ¹³⁷Cs
- Collect extensive radiation background with no Pd target in vacuum, no Pd target in D₂, Pd-ANF in air and H₂
- Collect radiation spectral data of Pd-ANF loaded with D₂
 - Measure the resistivity of pre- and post- D₂ loaded Pd-ANF

Initial Test Plan: Develop Pd NP Recipe Book

- Size and shape variation of Pd NPs largely influenced by the surface ligand choice
- Concentrations, pH, reaction time also factors to consider
- Past success incorporating NPs into ANF using Cit. with Au and Ag, PVP with Ag

PVP

Ji, Wenhai, et al. "Synthesis of Marks-Decahedral Pd Nanoparticles in Aqueous Solutions." *Particle & Particle Systems Characterization* 31.8 (2014): 851-856.

СТАВ

Sun, Yuan, et al. "Seedless and templateless synthesis of rectangular palladium nanoparticles." *Chemistry of Materials* 19.8 (2007): 2065-2070.

Citrate

Wen, Dan, et al. "Controlling the growth of palladium aerogels with high-performance toward bioelectrocatalytic oxidation of glucose." *Journal of the American Chemical Society* 136.7 (2014): 2727-2730.

Chen, Hongjun, et al. "Synthesis of palladium nanoparticles and their applications for surface-enhanced Raman scattering and electrocatalysis." *The Journal of Physical Chemistry C* 114.50 (2010): 21976-21981.

Initial Test Plan: Incorporate Pd NPs into ANF

Schematics for NP/ANF incorporation

- Pd/ANF nanocomposites prepared via vacuum filtration, forcefully infiltrating NPs into the ANF film which acts as a filter
- Variations in NP diameter and geometry will vary the nanoscale "cracks" within the composite, though smaller NPs anticipated to lead to smaller "cracks" where the NAE is expected to exist

Initial Test Plan: Construct and Validate Detector Setup

Can use *EPSILON-G* imaging system based on GAGG:Ce (~6 - 7 % resolution) or *EPSILON-H* system based on stilbene (E_R = 10.9 %), but using CLLBC for inorganic dual-mode detection with 3 % resolution.
 Also have HPGe detector if greater photon energy resolution needed

Pb shielding

HPGe

Initial Results: Aqueous Pd Nanoparticle Synthesis

- Citrate-stabilized Pd nanoparticles successfully produced in both NaBH₄ (Rt.1) and tannic acid (Rt.2) reduction routes
- Autoclave preparation (Rt.3) has not succeeded in initial tests
- NPs from Rt.1 appear more spherical, while NPs from Rt.2 appear more polygonal
- Measured Pd particle size after purification is 9.6 ± 2.0 nm (N=100)
 - PDI = 0.044 (goal: PDI < 0.1)</p>

Purified by centrifugal filtration 5000x g for 5 minutes With 100 kDa filter

Initial Results: Routes for size tunability

PVP-stabilized Pd

Reduced citrate ligand

Attempt at seeded growth

Initial Results: Pd-ANF preparation

Can successfully load with > 60 wt% Pd as measured with thermogravimetric analysis

Temperature 7 (°C)

2

Initial Results: H-Loading via Resistance Variation

 Must load enough that sample is conductive.

	R (Ω) Pd-ANF Matte
2.31E+07	3.20E+07
2.41E+07	1.18E+07

 Non-uniform loading throughout thickness but OK if surface loaded because of limited penetration depth of ions targeted (163 μm).

Initial Results: Hydrogen-Loading via Resistance Variation

Measure pressure, temperature, and resistance with three of the analog channels of an Arduino.

Pd-ANF is one component of resistive bridge circuit.

Resistance increases from 710 W to 940 W ($R/R_o = 33$ % before saturation => ~33 % D loaded into composite before saturation.

Initial Results: Pre- and Post-D SEM Analysis

CHANGING WHAT'S POSSIBLE

Initial Results: Can change openness of microstructure

Difficult to image individual NPs and nanostructure for these air-dried samples (template collapses under surface tension).

Initial Results: Can Co-locate the Pd with the semiconductor NPs (PbTe)

- Dot-to-dot coupling (overlap of orbitals) essential to material functionality.
- Performance of various nanostructured materials suggest this is the case (high conductivity in metallic NP / ANF, high-resolution detection for semicond. composites).

Initial Results: Radiation detection (lons, Photons) via Si PIN

Initial Results: Pd-ANF (5 mm and 325 rpm 2 %) with external ¹³³Ba source

Initial Results: Initial Radioactivity of Pd-ANF (5 mm mold-cast sample)

- Assess the natural background within the Cu-lined Pb cylinder.
- Long-accumulations needed to observe lower intensity peaks in background (composed principally of uranium and thorium decay species).
- **Result:** Pd nanostructured solids are not gamma-ray emitters (as expected)

Initial Results: Pd-ANF 2 day and 4 day counts (pre D and post D measurements)

Initial Results: Potential gamma-ray emitters if Pd fuses with D (or DD or DDDD)

Initial Results: Evaporated Pd contact on Si PIN detector, ²⁴¹Am

=> alpha-induced DD fusion is present.

(so we can identify DD fusion.... Just have to get rid of the alpha source)

Initial Results: Alpha-induced DD fusion

=> Calibration of chamber before the experiment with ¹³³Ba, ⁶⁰Co, ¹³⁷Cs

CHANGING WHAT'S POSSIBLE

24

Plans for Next Quarter

- Assembly of new 4" and 6" diameter cylindrical testing chamber, with feedthroughs to add thermal sensors, 4-point probe resistance measurement, pressure sensors, radiation sensors, and connections to collect post-reaction gas for measurement by mass spectroscopy
- Full validation of new detector setup, with temporal and energy characteristics established
- Prepare Pd-ANF with varying NP size and geometry, and test with D₂ loading
- Investigate preparing core/shell Pd/Cu NPs
- Investigating electrolytic D₂O loading using Pd-ANF as cathode
- Continue to search for indications of LENR

