

Total Project Cost:

Length

\$1.26M

24 mo.

тм

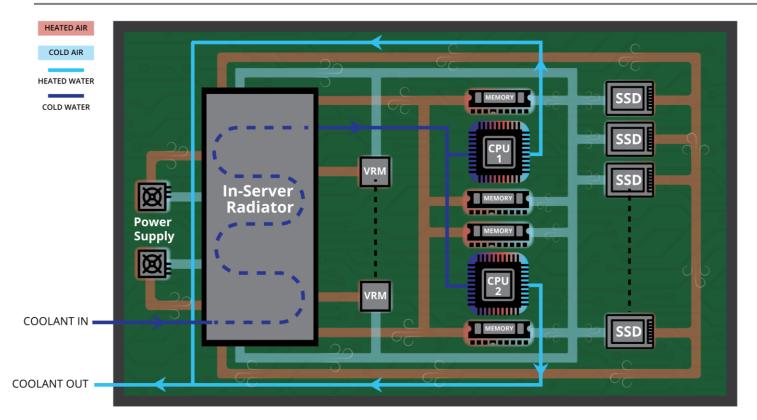
Sub-One System Dr. Ludwig Haber, JetCool Technologies

Project Vision

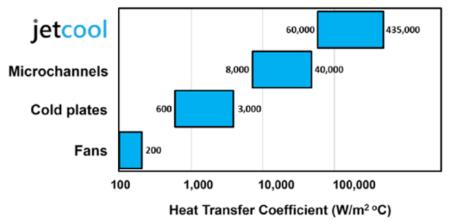
- Eliminate Facility Air Cooling at the Server Level
- Use Micro-convective cooling to operate silicon at highest electrical efficiency
- Reduce server fan power consumption by eliminating exchange with data center air

COOLERCHIPS Kickoff Meeting October 18 & 19, 2023

Fed. funding:	\$1.26M
Length	24 mo.

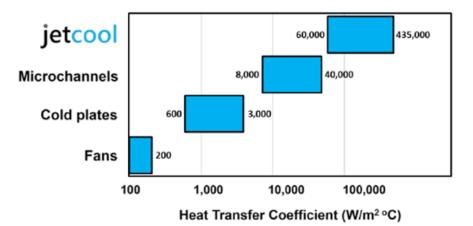

Team member	Location	Role in project, core competencies
JetCool Technologies Inc.	Littleton MA	Prime, micro-convective cooling, micro-channel Hx's, product development
Sandia – Manzano Data Center	Albuquerque NM	Technology verification site

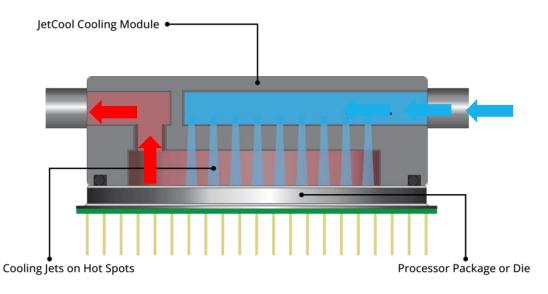
Sub-One System for Silicon Efficiency and Elimination of Air Cooling to Server


Combine micro-convective heat transfer at the CPU / GPU with innovative microchannel radiators in-server to eliminate facility supplied air cooling in the server.

Concept Detail

- Micro-convective cooling direct-to-lid
- Compact micro-channel radiator for in-server cooling

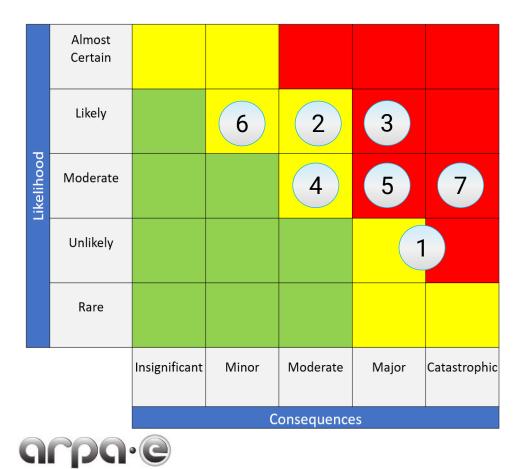



FOA Metrics	Units
Resistance Target (case to fluid)	0.009 K/W
Cooling Power % of IT_power	<3 %
System availability	99 %
Chipset	3^{rd} / 4^{th} Generation Intel Xeon 3^{rd} / 4^{th} AMD EPYC
Chip Power	200-400W
Power per server	Current validation platform is 1/3 U dual CPU slices. 6 CPU's per U.
Validation power mid project	12 kW

- Target hot spots
 - Concentrate cooling at highest heat flux
- Performance improves for warmer coolants
 - Reynolds number dependence
- Lower spreading is preferable
 - Get to source and minimize flow
 - Maximize heat flux

Task Outline & Technical Objectives

- ▶ Phase 1 (6 mo):
 - Develop micro-convective cooling architecture analytically
 - Validate performance targets in heat transfer and fluid power
 - Develop micro-channel radiator architecture analytically
 - Validate air distribution and component cooling performance
- Phase 2 (18 mo):
 - Experimental verification of Sub-One system at 12 mo
 - Reliability testing and modeling at 18 mo
 - 12kW deployment prior to completion



Intel i7 direct to lid cooling prototype

Challenges and Risks

- Fundamental technology has been proven many times over
 - Constraints provide most of risk
- Reliability is the key to commercial success and must be addressed early and often

CHANGING WHAT'S

Risk Status

Risk	#
Case-to-fluid thermal resistance	1
Lack of accurate heat flux maps	2
Exceeding fluid power target	3
Chip temperature above 60 °C	4
Excessively large radiator required	5
Pressure requirement for direct system tie-in	6
System reliability	7

Technology-to-Market Approach

- JetCool is already entering the market with competitive products:
 - Smart Plate System: Bridge to liquid cooling
 - Smart Plate: Aggressive performance cold plates for the newest processors
- Key to Sub-One Commercial Success:
 - Leverage existing partnerships among OEM, end-user, and chip manufacturers
- **Sub-One** Markets:
 - Near term: Edge computing (Sub-One offers easier implementation with no server HVAC impacts)
 - Long term: HPC data centers with applications in AI, HFT

Needs and Potential Partnerships

- JetCool has developed product specific reliability models but needs to integrate these in data center level reliability modeling. Looking for partners in the COOLERCHIPS community !!
- Current technology validation cluster is 2nd Generation Xeon
 - Meets power density requirements
 - Sandia / Manzano is great to work with
 - Possible desired improvements in technology validation platform:
 - TDP is relatively low at 200W / processor
 - Does not contain challenge of addressing storage cooling
 - Looking for alternative cluster conversions (and optional revert-back)
- Cooling infrastructure:
 - Challenge question: Can the rack-level or row-level CDU be integrated with primary loop ?

https://arpa-e.energy.gov

