

Research Division

Elizabeth Hulihan – PM Pritish Parida – Co-PI, Task 1 Lead Mark Schultz – Task 2 Lead Peilin Song – Manager Todd Takken – Manager Shurong Tian – Thermal Engineer

Infrastructure Division

Levi Campbell – Manager Milnes David – Infrastructure PI, Task 4 Lead Dustin Demetriou – Task 5 Lead Brian Werneke – Task 3 Lead Cory VanDeventer – Task 4, Co-Lead Francis Krug – Mechanical Engineer

Total Project Cost:	\$3.3M
Length	36 mo.

© 2023 IBM Corporation

COOLERCHIPS Kickoff Meeting October 18 & 19, 2023

Project Vision – Dual Loop Two-Phase Cooling System

Develop Two-Phase Dielectric Cooling for Servers

- **Performance** Low thermal resistance to reduce chip to ambient temperature delta
- Energy Efficiency Heat transfer using coolant above ambient temperature enables COP > 30
- Water Efficiency Eliminate cooling water usage WUE = 0

Systems Two-Phase Cooling Overview

Team member	Location	Role in project, core competencies
IBM Research	Yorktown Heights, NY	 Two-Phase Cooling Experimental Demonstrations – Evaporator designs Modeling – Full-/Reduced-Physics and System-level models
IBM Infrastructure	Poughkeepsie, NY	 High End Server Two-Phase Cooled Product Development Rack-level System Integration Multi-server experimental demonstration

Enabling features of our proposed technology

- System component design based on high fidelity full/reduced-physics two-phase flow models
- System integration into a current product platform

Bigger vision / Heat Transfer and System reliability summary

- Pathway to Sustainable Computing: Two-Phase cooling enables energy efficient heat transfer and compute anywhere
- Non-conductive dielectric fluids prevent leaks from generating system damage (reduce risk severity)
- System integration for reliability and redundancy guided by zSystem water cooling data

What is your envisioned goal/success criterion for your project

Product implementation of two-phase cooling to replace current cooling strategies

Systems Two-Phase Cooling Concept Detail

Task Outline and Technical Objectives

Objectives

- Demonstrate robust two-phase cooling of a commercial computer system with multiple servers while varying power levels
- Develop and advance two-phase component and system models to inform designs and system configuration

Task 1 - Two-Phase Cooling Design Simulation

Task 2 - Two Phase Coldplate Development

Task 3 - Two Phase Cooling Loop Component Assessment

Task 4 - Demonstrate Two Phase Cooling for High End Servers

Task 5 - Technology to Market

Demonstrate Two Phase Cooling in IBM zSeries

Technology-to-Market Approach

- The objective of this program is to demonstrate a system level two-phase cooling technology on a commercial high-end server to accelerate toward commercial adoption.
- The commercial transition of the proposed technology needs to be driven by:
 - A demonstration of the technology with proven performance, reliability, availability, and serviceability expected of the enterprise
 - End-user acceptance through a positive ROI in new and existing data centers.
 - The near-term market opportunity includes systems that currently deploy direct liquid cooling (e.g., high-end systems, supercomputers, and AI systems).
- Results of this program will be shared with the data center community, component suppliers, and modeling software companies to encourage commercial adoption of two-phase liquid cooling

Needs and Potential Partnerships

- Please list any additional current needs for your project: resources, expertise, etc.
 - Development of advanced compact condensers beyond state of the art
 - High heat transfer coefficient (UA)
 - Low pressure drop
 - Compact form factor

Acknowledgement

The information, data, or work presented herein was funded in part by the Advanced Research Projects Agency-Energy (ARPA-E), U.S. Department of Energy, under Award Number DE-AR0001577. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

8

Q & A

https://arpa-e.energy.gov

