

Delivering energy and exergy efficiency in the converged 5G RAN/EDGE compute network Todd Salamon (PI), Nokia Bell Labs Team Members: University of Illinois at Urbana-Champaign

Project Vision

 We are solving the combined challenges of edge server densification and energy efficiency by developing a highly efficient thermal energy architecture that allows heat capture ≥ 160 °F (~71 °C) for economic heat reuse.

COOLERCHIPS Kickoff Meeting October 18 & 19, 2023

© 2023 Nokia

Proprietary and Confidential – Use Pursuant to Company Instructions

Fed. funding:	\$2.78M
Length	36 mo.

Team member	Location	Role in project, core competencies
Nokia Bell Labs (NBL)	Murray Hill, NJ	Role: System and component development Core competencies: two-phase heat transfer; advanced packaging and integration; system-level testing
University of Illinois (UIUC)	Urbana-Champaign, IL	Role: Enhancing component-level liquid cooling Core competencies: heat transfer; surface enhancement techniques for improved flow boiling; immersion cooling

Context/history of the project

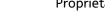
- How project came together: Leverage NBL's and UIUC's core competencies to develop a highperformance thermal management system for edge computing applications
- Enabling features: Completely passive, self-regulating thermal management system based on two-phase thermosyphon and advanced integration
- Bigger vision: Enable scalable path to increased heat server heat densities while reducing TUE and reusing captured heat
- Goal/success criterion: Demonstrate heat capture ≥ 160 °F (~71 °C) and reuse with 3X to 4X increase in server heat density

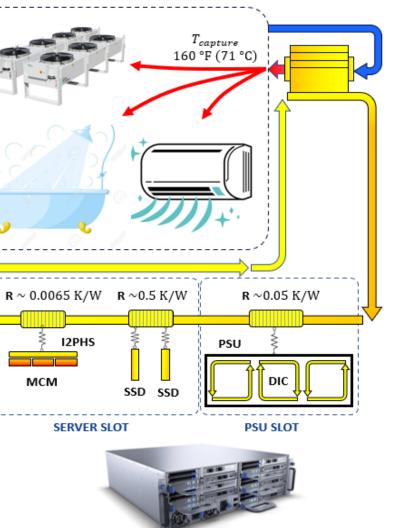
Concept Detail

Our innovation: Passive system with highly-integrated liquid cooling

Key performance metrics:

Metric	State of the Art	Proposed	Unit
Heat capture temperature, $\mathcal{T}_{\scriptscriptstyle ext{capture}}$	~15 (~59)	> 71.1 (160)	°C (°F)
Compute node heat density ¹ , $\mathcal{Q}_{\scriptscriptstyle server}^{\prime\prime\prime}$	~96	≥ 274	kW/m ³
Heat capture efficiency, η_{capture}	>90	> 90	%
DC TUE (= P_{total} / P_{IT})	1.4	≤ 1.09	-
DC WUE (= DC water usage / P_{IT})	1.8	0	L.kWh ⁻¹
Chip cooler performance, R _{chipto-cooler}	0.015	0.0065	C.W ⁻¹


- **Technology commercialization routes:** Develop supply chain leveraging licensing, partnering / spin-out and In-house offering
- Simulation tool:
 - Utilizing in-house two-phase thermo-fluidic simulation tool
 - Enhancements for 3D heat spreading, plenum effects, and system simulation

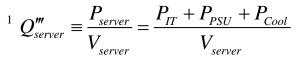

© 2023 Nokia

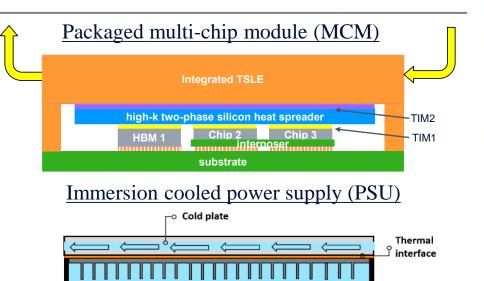
Thermal test vehicle: 1000 W multi-chip module (MCM)

¹
$$Q_{server}''' \equiv \frac{P_{server}}{V_{server}} = \frac{P_{IT} + P_{PSU} + P_{Cool}}{V_{server}}$$

System architecture

Concept Detail


• **Our innovation:** Passive system with highly-integrated liquid cooling


Key performance metrics:

Metric	State of the Art	Proposed	Unit
Heat capture temperature, $\mathcal{T}_{ ext{capture}}$	~15 (~59)	> 71.1 (160)	°C (°F)
Compute node heat density ¹ , Q_{server}'''	~96	≥ 274	kW/m³
Heat capture efficiency, η_{capture}	>90	> 90	%
DC TUE (= P_{total} / P_{IT})	1.4	≤ 1.09	-
DC WUE (= DC water usage / P_{IT})	1.8	0	L.kWh ⁻¹
Chip cooler performance, R _{chipto-cooler}	0.015	0.0065	C.W ⁻¹

- Technology commercialization routes: Develop supply chain leveraging licensing, partnering / spin-out and In-house offering
- Simulation tool:
 - Utilizing in-house two-phase thermo-fluidic simulation tool
 - Enhancements for 3D heat spreading, plenum effects, and system simulation
- Thermal test vehicle: 1000 W multi-chip module (MCM)

└o Transformer

Transistor o-

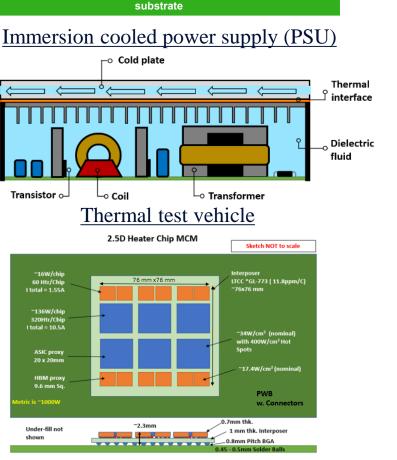
└-₀ Coil

Dielectric fluid

Concept Detail

Our innovation: Passive system with highly-integrated liquid cooling

Key performance metrics:


Metric	State of the Art	Proposed	Unit
Heat capture temperature, $\mathcal{T}_{ ext{capture}}$	~15 (~59)	> 71.1 (160)	°C (°F)
Compute node heat density ¹ , $\mathcal{Q}_{\scriptscriptstyle server}^{\prime\prime\prime}$	~96	≥ 274	kW/m ³
Heat capture efficiency, η_{capture}	>90	> 90	%
DC TUE (= P_{total} / P_{IT})	1.4	≤ 1.09	-
DC WUE (= DC water usage / P_{IT})	1.8	0	L.kWh⁻¹
Chip cooler performance, R _{chipto-cooler}	0.015	0.0065	C.W ⁻¹

- Technology commercialization routes: Develop supply chain leveraging licensing, partnering / spin-out and In-house offering
- Simulation tool:
 - Utilizing in-house two-phase thermo-fluidic simulation tool
 - Enhancements for 3D heat spreading, plenum effects, and system simulation
- Thermal test vehicle: 1000 W multi-chip module (MCM)

¹
$$Q_{server}''' \equiv \frac{P_{server}}{V_{server}} = \frac{P_{IT} + P_{PSU} + P_{Cool}}{V_{server}}$$

Chin 3

terposer

Packaged multi-chip module (MCM)

Integrated TSLE

high-k two-phase silicon heat spreader

Chip 2

HBM 1

Transistor o-

~16W/ch

~136W/chip 320Htr/Chip I total ≈ 10.5A

> ASIC proxy 20 x 20m

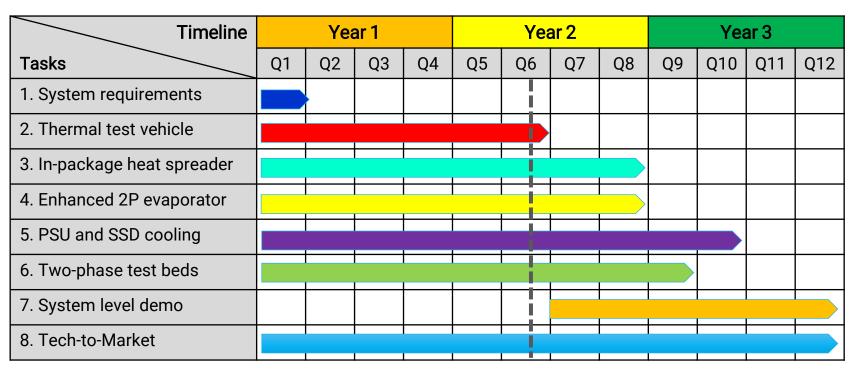
9.6 mm Se

60 Htr/C I total ≈ 1.55/ TIM2

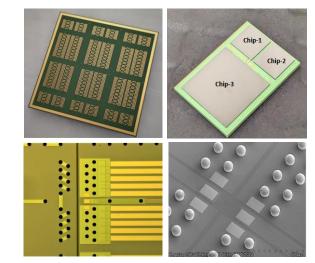
TIM1

Task Outline & Technical Objectives

Primary tasks


Timeline	Year 1			Year 2				Year 3				
Tasks	Q1	Q2	Q3	Q4	Q5	Q6	Q7	Q8	Q9	Q10	Q11	Q12
1. System requirements												
2. Thermal test vehicle												
3. In-package heat spreader												
4. Enhanced 2P evaporator												
5. PSU and SSD cooling												
6. Two-phase test beds												
7. System level demo												
8. Tech-to-Market												

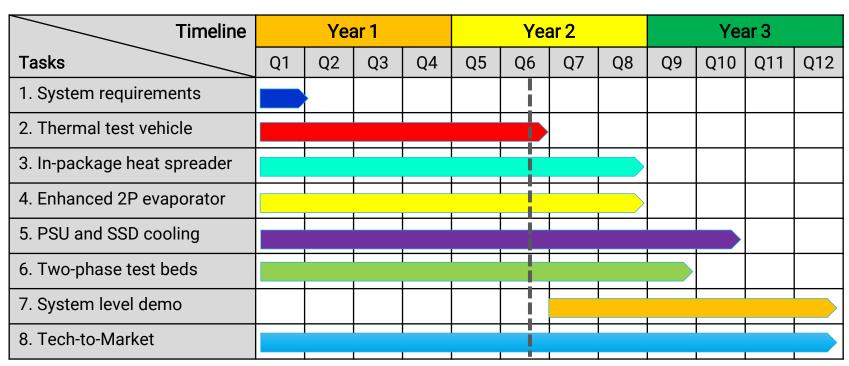
- Major project targets and deliverables
 - 1000 W MCM thermal test vehicle
 - − Surface enhanced two-phase evaporator with $R_{chip-to-cooler} \le 0.0065 \text{ C/W}$
 - Overall system demonstration



Task Outline & Technical Objectives

Primary tasks

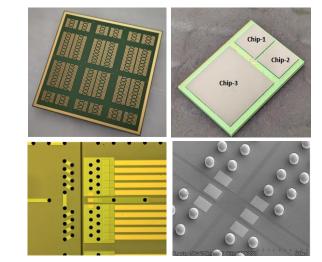
Images of MCM components

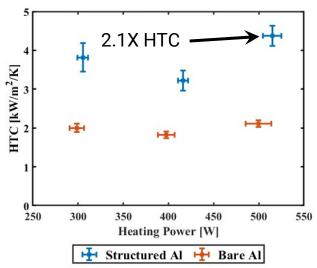


- Major project targets and deliverables
 - 1000 W MCM thermal test vehicle
 - Surface enhanced two-phase evaporator with $R_{chip-to-cooler} \le 0.0065 \text{ C/W}$
 - Overall system demonstration

Task Outline & Technical Objectives

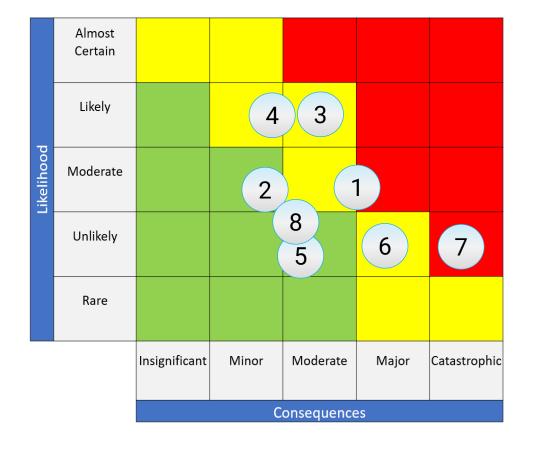
Primary tasks


- Major project targets and deliverables
 - 1000 W MCM thermal test vehicle
 - Surface enhanced two-phase evaporator with $R_{chip-to-cooler} \le 0.0065 \text{ C/W}$
 - Overall system demonstration


© 2023 Nokia

Proprietary and Confidential – Use Pursuant to Company Instructions

Images of MCM components



Enhanced evaporator performance

Challenges and Risks

Primary technical and commercialization risks

Risk Status

Risk	#
Thermomechanical stress	1
Heat capture efficiency	2
2P IHS integration	3
Evaporator performance	4
MCM test bed	5
TCO advantage	6
System thermofluidic reliability	7
Sliding interface reliability	8

Technology-to-Market Approach

- What is our commercialization plan? Develop supply chain to support edge computing application
 - Licensing
 - Partnering / spin-out
 - In-house development and offering
- How will it lead to further follow-on investment?
 - Stakeholders will provide additional development resources to commercialize
- What are the anticipated first markets? What are the market requirements in terms of cost and performance?
 - Targeting EDGE DC market. Total cost of ownership (TCO) less than air- and single-phase liquid cooling.
 Performance allowing significant rack (>100 kW) and site densification.
- What are the anticipated long-term markets? What are the market requirements in terms of cost and performance?
 - Long-term market would target larger-scale data centers. Total cost of ownership (TCO) less than airand single-phase liquid cooling. Performance allowing significant rack (>100 kW) and site densification.

Needs and Potential Partnerships

- Please list any additional current needs for your project: resources, expertise, etc.
 - Thermofluidic modeling and simulation of two-phase flow (potential for partnering / collaboration)
 - Example areas: Component modeling (e.g., heat exchangers, condensers, etc.), model validation, system simulation, device modeling (e.g., oscillating heat pipes)
 - Discussions with large-scale data center operators on cooling system requirements, operational considerations, etc.
- Please list any anticipated needs following the completion of the award

Q&A OCPO®

https://arpa-e.energy.gov

© 2023 Nokia