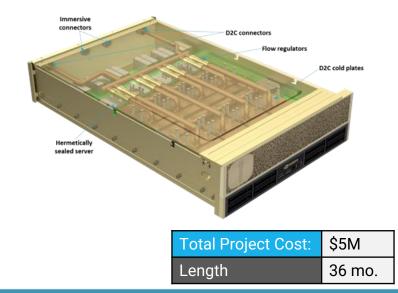


COOLERCHIPS


TM

Green Refrigerant-Based Compact Hybrid System for Ultra-Efficient and Sustainable HPCs Cooling Ali Heydari, Nvidia Corporation

Team Members: Vertiv Corporation Boyd Corporation Durbin Group LLC Binghamton University Villanova University

Project Vision

Combining two of the most energy-efficient and thermally effective electronic cooling approaches to achieve the lowest possible limit for DC energy consumption and pushing power density to remarkable levels

COOLERCHIPS Kickoff Meeting October 18 & 19, 2023

Brief COOLERCHIPS Project PI & Co PIs

Fed. funding:	\$5M
Length	36 mo.

Organization: Nvidia Corporation.

PI: Dr. Ali Heydari.

Title: Distinguish Engineer and Data Center Technologist.

Organization: Binghamton University.

Co PI: Dr. Bahgat Sammakia.

Title: VP for Research, Binghamton University (SUNY).

Organization: Villanova University.

Co PI: Dr. Alfonso Ortega.

Title: Site Director for the NSF Center for Energy Smart Electronic Systems.

Organization: Durbin Group LLC.

Co PI: Joseph Marsala.

Title: Chief Technical Officer of Durbin Group LLC (CTO).

Organization: BOYD Corporation. Co PI: Sukhvinder Kang. Title: Chief Technology Officer (CTO).

Organization: Vertiv Corporation. **Co PI:** Steve Borror.

Title: Engineering Manager.

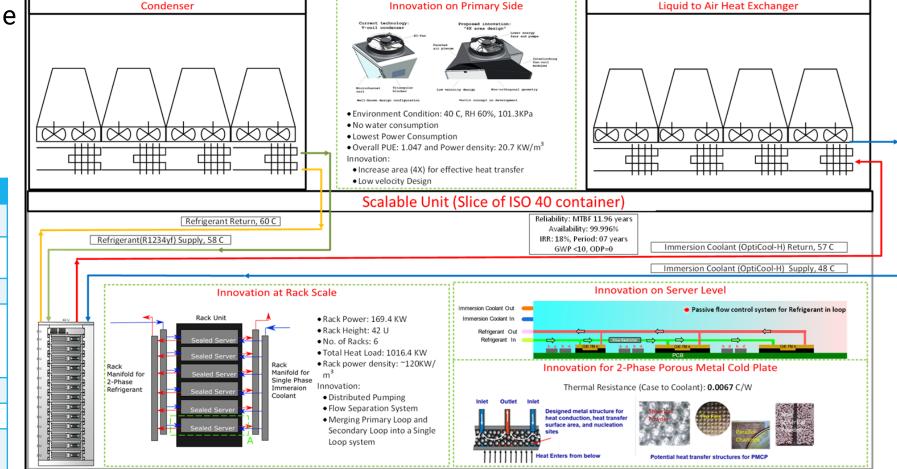
Brief COOLERCHIPS Project Overview

Fed. funding:	\$5M
Length	36 mo.

Team member	Location	Role in project, core competencies
Nvidia Corporation	Santa Clara, CA	 Project management developing immersion sleds developing digital twin of full scale system
Vertiv Corporation	Westerville, OH	Heat rejection unitsFlow and power distribution
Boyd Corporation	Pleasanton, CA	Novel porous two-phase metal cold plates
Durbin Group LLC	Fredericksburg, VA	 Rackmount distributed two-phase CDUs, and flow separation system
Binghamton University	Binghamton, NY	Experimental testing, analytical analysis, modeling
Villanova University	Villanova, PA	 Experimental testing, analytical analysis, modeling

Context/history of the project

 Join forces with both industry and academia to create innovative solutions that lower the environmental impact and costs of data centers.

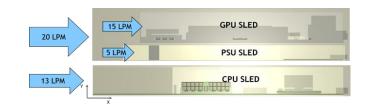


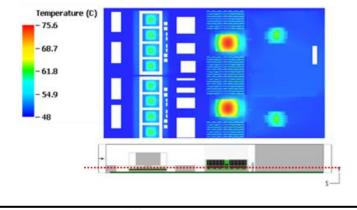
Concept Detail

Innovation at every scale

 Empirical data and modeling utilized to assess the system

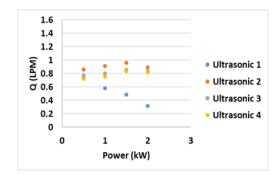
FOA Metrics	Units
Resistance Target	0.01 K/W
Cooling Power % of IT_power	5 %
System availability	99.996 %
Chipset	Nvidia high power density chip which is used for HPC or generative Al
Chip Power	≥1000 W
Power per server	10000 W (3U server)
Demonstration power mid project	40 kW



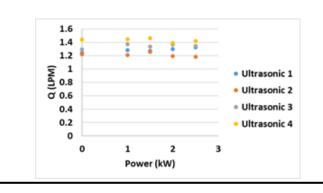

Concept Detail

Immersive Sleds

 Hybrid pumped two phase and immersion cooling



- CFD assessment
 - All Components' temperatures are maintained within the limit

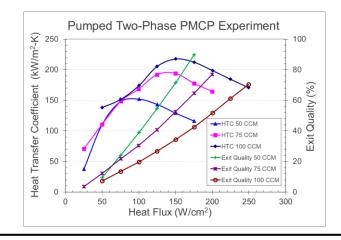


Pumped Two-Phase Flow Control

 Non-uniform heating impacts flow uniformity

 Flow controllers can maintain stable flow

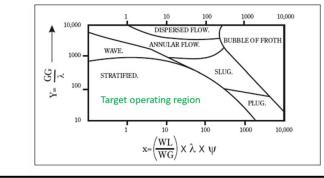
High Heat Flux Cold Plates


 Advanced cold plate heat transfer structures

Potential heat transfer structures for PMCP

Experiment assessment

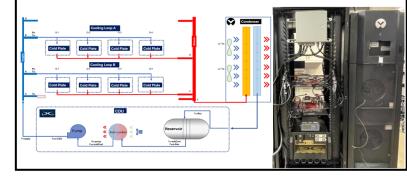
 HTC Exceed 200 kW/m2 -K


Concept Detail

Distributed Pumping System

 Eliminate CDU by utilizing flow separation

- Vapor phase goes to the external condenser
- Unevaporated liquid is returned to the refrigerant reservoir



Heat Rejection Unit

 Innovative design to increase heat transfer area

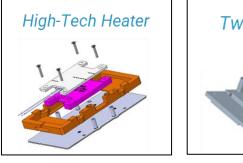
- Experiment assessment
 - Existing technology system
 Rth 0.023 K/W

PUE

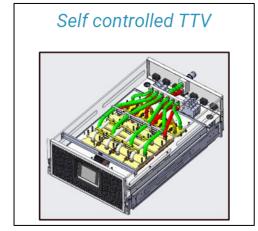
Analytical assessment
 PUE <1.05

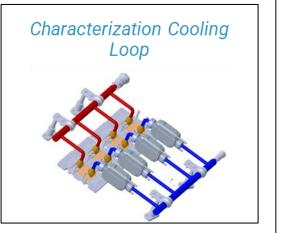
Energy usage source	Power consumption (kW)
IT equipment	1016
Free cooler 1 (dedicated to two-phase)	14.4
Free cooler 2 (dedicated to immersion)	7.2
Immersion fluid pumps	19.8
In-rack distributed pumps	6.4
Lighting	0.3
Container air conditioning	0.7
Total cooling system power	47.8

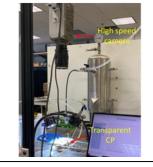
Task Outline & Technical Objectives


	Year 1	Year 2	Year 3
Key Milestone	Design refinement & component targets	 Key Component de-risking, Single Server Prototype 	 Full server system test completion
Testing Scale	Benchtop	Partial Rack Level	System Level Testing
Deliverables Level	Components Level	<section-header></section-header>	Scalable System Level

Team Capabilities

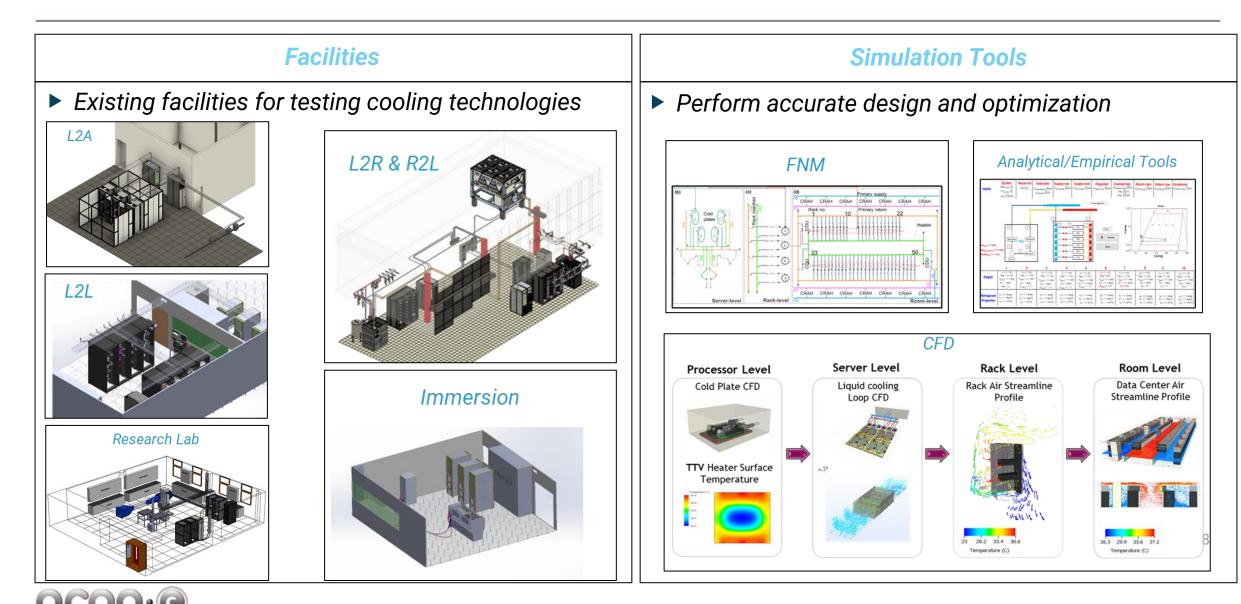


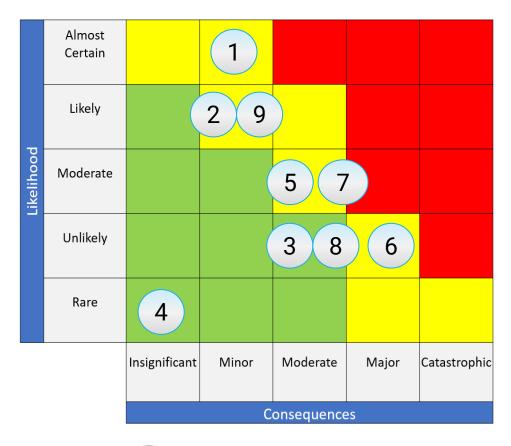

Design refinement & component targets



Laboratory Research and Testing

Highly instrumented characterization setups
 Bench/rack setups supporting different scales




Team Capabilities

CHANGING WHAT'S POSSIBLE

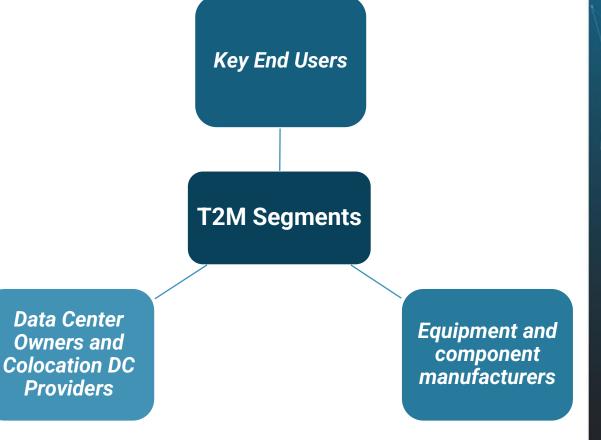
Challenges and Risks

- Every risk could impact one or more technical targets.
- Every part of the system could introduce one or more technical risks.

Risk Status

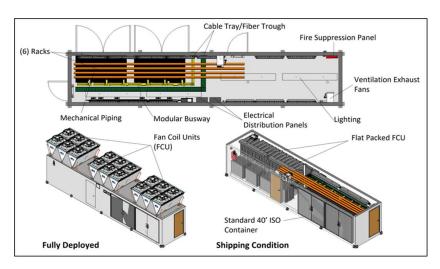
Area	Risk	#
Immersive sleds	Improper flow distribution.	1
Immersive sleds	Leakage & material compatibility.	2
Porous cold plates	Degraded thermal performance due oil existence.	3
Flow controllers	Improper sizing of flow controllers.	4
Rack pumping system	Violating required Net Positive Suction Head (NPSHr).	5
Heat rejection unit	New advanced coil topology complexity.	6
Heat rejection unit	Piping network complexity.	7
Adoption	High cost.	8
Adoption	Possible change in chip technology, such as lower junction threshold.	9

Technology-to-Market Approach


Demand/Market Assessment

- Market research, challenges, and outreach
- Competitive market analysis
- ROI analysis
- Supply Chain Analysis
 - Key material/component sources and availability

Manufacturing & Scalability Analysis


- Production process, risks, and capacity
- Statistical process control
- **Cost/Techno-Economic Analysis**
 - Trade-offs, sensitivity, and financial outlook
 - Warranty and service cost
- Regulatory & Competitive Analysis
 - Impact assessment and competitor evaluation
 - Safety compliance

Digital Twin

- Omniverse is a platform developed by NVIDIA, used to create and leverage digital twins to visualize, design and simulate physics-based systems.
- Building a digital twin of the ISO40 POD with the proposed innovations will enable us to design, visualize and simulate at a reduced cost.

Q & A

https://arpa-e.energy.gov

