

Status of Batteries for Aviation Applications

VENKAT SRINIVASAN Argonne National Lab

NASA-DOE Meetings on Batteries for Electric Aviation

- Bring together two different communities: aviation and battery
- Goal: access the status of electric aviation and RDD&D needs
- Learning from EVs to accelerate EA technology and adoption

Peter Faguy

Tien Duong

Ajay Misra

.

Ragone Plot Comparing Battery Types and Applications

The Challenge in EVs Have Changed.

EV battery performance targets (blue) and actual average performance (red)

Strategy:

- Material traceability and end-of-life
- R&D to bridge the supply gap
 - Substitutions (e.g., Na-ion- see LENS): https://www.anl.gov/lens
 - Recycling
 - Extract local resources (e.g., urban mining)
- Lab-to-fab pilot line networks

Why Electrify Aviation? i.e., Beyond GHG

- 1. Enable markets that are not accessible before
 - eVTOLs (air taxis) enabled by distributed propulsion
- 2. Reduce maintenance/inspections
 - ~50% lower maintenance cost and longer inspection schedules (3 vs 10 years)
- 3. Reduced noise
 - As much as 50% reduction near take-off/landing zones
- 4. Reduced total cost of ownership
 - 20-30% lower. Driven by fuel savings, lower maintenance, and higher efficiency.

Some significant differences between Aviation and EV battery needs

- 1. Unlike EVs, mission profiles still in the works
- 2. Pulses are higher power and for much longer time (2 mins)
- 3. Wh/kg critical. Wh/l not as much?
- 4. Reducing thermal management opens the door for high temperature batteries
- Constrained landing locations could enable battery swapping and mechanical recharging
- 6. Back to structural batteries?

We need to define few targets (much like in xEV)

Potential Missions

Unique Characteristics

• Specific Energy: 5-6x vs. EVs

• Take off/landing power: 4x vs Evs

Cycle life: 10x vs. EVs

737-type short haul jet with 700-mile range and 100 passengers.

• Specific Energy: 2-3x vs. EVs

• Take off/landing power: 5x vs EVs

• Cycle life: 10x vs. EVs

737-type hybrid short haul jet with 700-mile range and 100 passengers.

• Specific Energy: 2-3x vs. EVs

Take off/landing power: 2x vs EVs

• Cycle life: 2x vs. EVs

Commuter flights with 300-mile range, 9-19 passenger with 3-4 trips a day.

• Specific Energy: 2-3x vs. EVs

• Power: 3x vs. EVs

• Cycle life: 2x vs. EVs

All-electric eVTOL urban air mobility with <7 passenger and 50+ mile range with 8-10 trips/day.

Spider chart for EVs vs eVTOLs Silicon calendar life extrapolated based on 2 years of data

Light duty EVs

Spider chart for eVTOL vs All Electric 737

An all-electric 737 powered by batteries is not happening anytime soon

Even Hybrid 737s Will be Hard

737 Class HEA

Reality is that we need more energy for all xEA applications

We Will Need High Energy AND High Power

How do we store energy in an electrochemical

device?

There are battery chemistries that promise gasoline-like energy density.... In theory!

Theoretical Does Not a Practical Battery Make

More R&D needed to enable these chemistres

Hard to Beat Liquid Fuels for High Energy... if They

are Soluble

Is there a new GHG-free reversible molecule to discover?

Summary of RDD&D

Today (180 Wh/kg_p)

