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NASA-DOE Meetings on Batteries for Electric
Aviation

* Bring together two different communities: aviation and battery
» Goal: access the status of electric aviation and RDD&D needs
» Learning from EVs to accelerate EA technology and adoption
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Ragone Plot Comparing Battery Types and Applications
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Peak Specific Power (W/kg)

10s pulse power for xEV.
All values at battery pack level

Clear targets crucial in driving battery innovation Argonne &
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The Challenge in EVs Have Changed.

EV battery performance targets (blue)
and actual average performance (red) Li-BRIDGE

Energy Density @ Li-BRIDGE

(500 Whil)

Tolerance to Abuse 100

(no propagation in pack

Specific Energy
(235 Wh/kg)

Building a Robust and
Resilient U.S. Lithium
Battery Supply Chain

CO, Emissions

Ter?fﬁ??s%inge (30 gCO-e/mile) Strategy:

» Material traceability and end-of-life

» R&D to bridge the supply gap
Fast Charge ¢ 1Critical Materials « Substitutions (e.g., Na-ion- see LENS):
(15 mins) Dependence https://www.anl.gov/lens
» Recycling
Calendar Life , _ « Extract local resources (e.g., urban
Selling Price ..
(15 years) _ ($60/kWh) mining)
Cycle Life » Lab-to-fab pilot line networks
(1000 cycles)
(%) ENERGY (5iaasrsire Electric aviation (EA) is like xEV from early 2000 Argonne &
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https://www.anl.gov/lens

Why Electrify Aviation? i.e., Beyond GHG

1. Enable markets that are not accessible before
— eVTOLs (air taxis) enabled by distributed propulsion

2. Reduce maintenance/inspections
— ~50% lower maintenance cost and longer inspection schedules (3 vs 10
years)

3. Reduced noise
— As much as 50% reduction near take-off/landing zones

4. Reduced total cost of ownership
— 20-30% lower. Driven by fuel savings, lower maintenance, and higher

efficiency.
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Some significant differences between Aviation and
EV battery needs

1. Unlike EVs, mission profiles still in the works

2. Pulses are higher power and for much —e-VTOL, 73 mi, 52.5kWh Pack |
longer time (2 mins)

m ACS Energy Lett. 2018, 3, 12, 2989 =
3. Wh/kg critical. Wh/I not as much? i .

4. Reducing thermal management opens the S urnrse wrse e Iraraaa | SIEDRT

door for high temperature batteries 0 20 Time‘t?n in) 60 80

Cell C-rate
- N W e,

5. Constrained landing locations could enable
battery swapping and mechanical
recharging

6. Back to structural batteries?

(%) ENERGY e e ory Argonne &
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We need to define few targets (much like in XEV)

Potential Missions Unique Characteristics Potential Market Introduction

PP E ARORAFT, . Specific Energy: 5-6x vs. EVs 737-type short haul jet with 700-mile
. Take off/landing power: 4x vs Evs range and 100 passengers.
« Cycle life: 10x vs. EVs

737 i';égg:FYTBRID o Speciﬁc Energy: 2-3x vs. EVs 737-type hybnd short haul Jet with
. « Take off/landing power: 5x vs EVs 700-mile range and 100 passengers.
* Cycle life: 10x vs. EVs

. Specific Energy: 2-3x vs. EVs Commuter flights with 300-mile range,

. Take off/landing power: 2x vs EVs 9-19 passenger with 3-4 trips a day.
« Cycle life: 2x vs. EVs

« Specific Energy: 2-3x vs. EVs All-electric eVTOL urban air mobility
 Power: 3x vs. EVs with <7 passenger and 50+ mile range
* Cycle life: 2x vs. EVs with 8-10 trips/day.
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Spider chart for EVs vs eVTOLs

Silicon calendar life extrapolated based on 2 years of data

Light duty EVs
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Spider chart for eVTOL vs All Electric 737

737 class AEA
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An all-electric 737 powered by batteries is not happening anytime soon
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Even Hybrid 737s Will be Hard

737 class AEA 737 Class HEA

SPECIFIC ENERGY
SPECIFIC ENERGY (400 Whkg)
;1(;)80 Whkg) 100
SELLING PRICE 80
MATERIAL-LEVEL (500 kWh) MATERIAL-LEVEL RS S SELLING PRICE
SAFETY A SAFETY ($500 kwh)
0 .
PEAK DISCHARGE CYCLE LIFE S\ B g /7
(waﬁ;g) (10,000 cycles) ! / ! ! / !
PEAK DISCHARGE 4 T a\w ,
; . " . e CYCLE LIFE
—-— POWER .
GriNMC (2500 Wikg) NN AV (10,000 cycles)
—&— SiINMC
—m— Gr|NMC
Y s &
FAST CHARGE CALENDAR LIFE SiNMC
(30-90% SOC in 30 mins ) (Byears) N s
TEMPERATURE RANGE -
(-40 to 65 C) TEMPERATURE RANGE CALENDAR LIFE
(—40 to 65 C) (5 yeals)

Reality is that we need more energy for all XEA applications
10 Argonne &

IONAL LABORATORY




We Will Need High Energy AND High Power
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How do we store energy in an electrochemical

device?

Dissolution/Deposition/
Precipitation/Conversion
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managed by UCRICago AFgonne, LLC.

Redox Flow
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There are battery chemistries that promise gasoline-like
energy density.... In theory!
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Theoretical Does Not a Practical Battery Make

More R&D needed to enable these chemistres
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Hard to Beat Liquid Fuels for High Energy... if They
are Soluble
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Rob Darling, RTRC
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High throughput calculations
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Is there a new GHG-free reversible molecule to discover?
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Summary of RDD&D

Needs ...
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BASIC APPLIED
RESEARCH RESEARCH

Extreme high specific
energy technology.
Path unknown.

Next generation Li with
extreme power, ultra long
cycle life

Advanced Li-ion/metal
(e.g.,Si|NMC) with high
power capability

Leverage EV R&D

SYSTEM LEVEL
RESEARCH

Safety at all levels
(materials, cells, packs)

Standardization (e.g.,
mission profiles)

Battery swapping
Mechanical recharge

New integration
approaches (Hybrids)

. Aviation specific R&D
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