
• Critical minerals are used in electric vehicles, nuclear and hydroelectric generators, and wind 
turbines.  These materials include commercialized permanent magnets, such as Nd2Fe14B and 
SmCo5, which rely on rare-earth (RE) constituents.  

• Setting aside the uneven abundance and an insecure supply chain, there may not be enough Nd or 
Dy in the world to produce the requisite wind turbines.   Moreover, there has not been a significant 
breakthrough in finding new permanent magnets since the early 1980’s with the discovery of 
Nd2Fe14B.  

ENERGY MATERIALS OF THIS CENTURY WILL BE BASED ON CRITICAL MINERALS 
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All in all, if you’re in a business where you 
can make an alternative work, it probably 
makes sense to do so, says Jim 
Chelikowsky, a physicist who studies 
magnetic materials at the University of 
Texas, Austin. But there are all kinds of 
reasons, he says, to look for better 
alternatives to rare earth magnets than 
ferrite.-  Wired Magazine, May 1, 2023. 

• Fe–Co alloys are abundant with high magnetic moments, but their common cubic phases have nearly zero 
magnetocrystalline anisotropy. Without sufficient anisotropy, a magnet cannot retain magnetization under 
high fields (low coercivity problem). 

• Introduce a light third element (X = B, C, Si, P, or Zr) to form Fe–Co–X ternary compounds in distorted 
(non-cubic) structures, thereby inducing large anisotropy. We employ a computational materials discovery 
workflow combining AI (machine learning) and high-throughput density functional calculations to 
efficiently search for new Fe–Co–X magnets that have both high saturation magnetization (Jₛ) and large 
anisotropy (K₁) – the key properties for permanent magnet. The goal is to find RE-free compounds with 
performance approaching RE magnet benchmarks.

CHALLENGE AND STRATEGY: 

• 🤖 Step 1: Train ML Model 
Build a crystal graph neural network (CGNN) model using 
known materials data to predict formation energy and 
magnetic polarization (Jₛ) for any Fe–Co–X structure. 
• 	⚡ Step 2: High-Throughput Screening 

Use the ML model to screen an enormous structure space 
(~105–106 hypothetical structures per system). Quickly filter 
down to a few hundred low-energy candidates for each 
ternary. 
• 	🔬 Step 3: DFT & Genetic Refinement 

Perform DFT on ML-selected candidates to validate energies 
and magnetic properties. Employ an adaptive genetic 
algorithm (AGA) to search for any still-lower-energy structures 
at those compositions. Iteratively refine the ML model with 
new DFT data to improve its accuracy. 
• 	⚖ Step 4: Stability Analysis 

Construct ternary phase diagrams and convex hulls from DFT 
formation energies. Identify structures at or near the hull (≤0.1 
eV/atom above) as thermodynamically stable or metastable 
phases worth pursuing. 
• 	🔗 Step 5: Candidate Selection 

Focus on compounds that combine high Jₛ and high K₁ and 
have acceptable stability. Recommend top candidates for 
synthesis.

MACHINE LEARNING (ML)-GUIDED 
DISCOVERY WORKFLOW 

~1,000,000
Structures Screened

ML models rapidly evaluate ~106 Fe–Co–X candidate 
structures per system.  

100+ 
New Compounds

High-throughput search predicts >100 Fe–Co–X phases  
(~10 on convex hull; others near-hull). 

~1.4 T & 1.2 MJ/m3

Top Magnetic Properties
Best candidates show ~1.4 Tesla saturation magnetization and 

~1.2 MJ/m³ anisotropy – rivaling Nd-Fe-B magnets.

DISCOVERY OF MAGNETS 

Fe–Co–B (Borides): Predicted tetragonal Fe₃CoB₂ 
(space group I4/mmm), which was later 
experimentally confirmed. It has K₁ ≈ 1.2 MJ/m³ 
and Jₛ ≈ 1.39 T4, matching predictions and 
demonstrating hard magnet behavior without RE. 
An orthorhombic FeCoB phase was also identified 
computationally, showing K₁ >1.0 MJ/m³ and Jₛ 
~1.34 T (a target for future validation).

SUCCESS STORY 

SUMMARY 

Through AI-driven high-throughput exploration, we rapidly 
uncovered a wealth of rare-earth-free magnetic compounds 
across multiple Fe–Co–X systems. Many of these candidates 
simultaneously achieve high Jₛ and high K₁ – the dual 
requirements for high-performance magnets.  

Equally important, most are calculated to be stable or (within 
~0.1 eV of the convex hull), making them viable for synthesis 
and integration into phase diagrams. The successful 
fabrication of Fe₃CoB₂ has validated this discovery approach. 

Looking ahead, our ML-guided framework can be 
generalized to other alloy systems, accelerating the search 
for advanced materials in energy and electronics. All 
predicted structures and their properties are being released 
in an open database of magnetic materials, empowering the 
community to further explore these compounds.  

By uniting machine learning with physics-based modeling, 
we demonstrate a new paradigm for fast, data-driven 
development of sustainable high-performance magnets, 
bypassing the resource limitations of rare-earth elements.
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