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Aviation: Difficult-to-eliminate CO, emissions
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Aviation: Traffic to triple by 2050
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* CO, emissions from international aviation, as well as global fleet, will triple at the horizon by 2050

* Anticipated that aviation industry will miss ICAO’s 2020 and 2030 fuel-efficiency goals for new aircraft by more than a decade
(due to focus on re-motorization instead of clean-sheet design)

https://data.worldbank.org/indicator/is.air.psqr
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https://data.worldbank.org/indicator/is.air.psgr

Aviation: Public perception shifts negatively toward flying

23% of respondents cited flying as the activity with the most
negative impact on the environment (6% in the US, 39% in Germany)
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Source: UBS Evidence Lab

data suggests
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Norway banned regional fossil fuel flight by 2040
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Ryanair one of Europe's top polluters, EU
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‘nygskam’ Is the Swedish travel trend that
could shake the global airline industry

Published: June 21,2019 3:06 p.m. ET
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Buzzword was born out of concerns about carbon emissions

*Swedish for
“flight shame”

‘Ryanair is the new coal': airline enters

EU’s top 10 emitters list {13l 4t F1g¢ | P

Irish firm joins nine coal plants on list, with carbon emissions up

nearly 50% in last five years

Megatonnes of CO2 equivalent is the scale
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Guardian graphic | Source: European Commission. *all their air flights
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Aviation: Electric aviation enables new, efficient aircraft design

» Electric propulsion offers fundamentally different characteristics with
several notable benefits:

— > 2x efficiency of SOA engines (especially for smaller engines), simplicity

— Increased safety through redundancy, extremely quiet, no power lapse with
altitude or hot day

» Electric propulsion scale-free nature enables distributed propulsion

» Distributed propulsion: distributing the airflows and forces about the aircraft
Improves the aerodynamics, propulsive efficiency, structural efficiency, etc.
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Aviation: Some concept designs of electric aviation
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A.M.Stoll, et al., “Drag Reduction Through Distributed Electric Propulsion”, 2014 0 -
K. Moore, A. Ning, “Distributed Electric Propulsion Effects on Traditional Aircraft SOA Baseline DEP Concept

Through Multidisciplinary Optimization” 2018

Source: Mark Moore, Distributed Electric Propulsion (DEP) Aircraft,
2012, NASA Langley Research Center

CHANGING WHAT'S POSSIBLE



Aviation: Civil aviation segments, where should we focus?

F--------------

Boeing B737-MAX 8 |
Range: 6,570 km

MTOW: 82,191 kg
Take-off thrust: 130.4 kN I

Beechcraft 1900
Range: 1,900 km
MTOW: 7.766 kg
Take-off thrust: 9.8 kN

LEAP-1B - Boeing 737 MAX

I
I
I
I I
Commuter: < 20 passengers Eirﬂeﬂslﬂnzgov&b@): 100 — 20 passengers _!

MRJ 70

Range: 1,880 km
MTOW: 40,200 kg
Take-off thrust: 67 kN

Boeing 777

Range: 15,840 km
MTOW: 300,000 kg
Take-off thrust: 440 kN

Main focus on narrow-body aircraft
Example: Boeing 737
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Regional: 30-100 passengers




Aviation:

Drivers for electric aviation

AOK (Sione) Commercial Aircraft Demand (2009-2029), units*
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* The corresponding dollar market value is as follows: Large ($220 billion); Twin-aisle (51.63 trillion);
Single-aisle ($1.68 trillion); and Regional jets ($60 billion).

Asian demand will be the largest at 6,710 planes,
followed by Europe (5,380), North America
(5,180), and Latin America (1,800)

Source: Boeing

Most ordered narrow-body aircraft
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Aviation: Addressing ARPA-E mission areas

o Global civil aviation fuel consumption
» Reduced emissions v

Business Jet Turboprop

.. . 1% 1%
» Increased efficiency v Regional et

» Reduce imports v

» Technological competiveness

— Enhances domestic aerospace industry

— Ensures export of US technology and
enables regional mobility around the globe

Any savings on fuel consumption can have massive
Impact on U.S. energy and emissions

dﬁ 4 d Y @ FIGURE 1.1 Global civil aviation fuel consumption. SOURCE: Data from B. Yutko and J. Hansman, 2011, Approaches to
Representing Aircraft Fuel Efficiency Performance for the Purpose of a Commercial Aircraft Certification Standard, MIT

CHANGING WHAT'S POSSIBLE International Center for Air Transportation, Cambridge, Mass.
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Aviation: System block diagram
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Aviation: Electric aviation needs (stakeholder input)

Energy storage to provide target flying range and payload (show stopper)

« Light, efficient and high power density electric motors (enabler) )
 Power electronics to convert, switch and condition the needed power at
high voltage (enabler) )

Safe and light high voltage distribution to deliver high power (enabler)

QrpQ-e@ "
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SCENARIO STUDIES — B/737-MAXS8
ELECTRIFICATION
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Aviation: Narrow-body aircraft & mission specifications

cruise speed

LEAP-1B - Boeing 737 MAX
23,000 - 28,000 pounds thru

Boeing B737-MAX 8
Single-aisle (narrow body): 100 — 200 passengers

Cruise speed.: 839 km/h
MTOW: 82,191 kg
Cruise thrust power: 8.7 MW (calculated)
Range: 6,570 km

Propulsive System: 2 x CFM LEAP 1B
Take-off thrust: 2 x 130.4 kN
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For this analysis, aircraft is assumed to take-off at its maximum take-off
weight (MTOW); with its maximum payload (Pl = 20,882 kg); at given
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Aviation: System block diagram
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Aviation: Overall propulsion system specific power
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Aviation: System block diagram
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Aviation: Component-level specific power targets
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res ( 1 1 )_UESC
Noverall Toverall 7TProp TEsc
T]overall = 60%
Toveran = 1,250 W/kg (100% range)
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Nprop = 90%,
Tphrop= 9,000 W/kg
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Need 1o~ 2 6,400 W/kg



Aviation: Electric Motors — Still a long way to go...
State of the Art (Overview)

Marathon motor

Power (kW/kg)

Continuous Specific

Industrial
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0.2 kW/kg, 1 = 85% >
&

Remy motor
2 kW/kg, n = 92%

EV Drive

ARPA-E motor (includes TMS)

Siemens motor
5 kW/kg, n = 95%

Aviation

/\

Dol

>(TBD) kW/kg, n > (TBD) %

Electric Aviation
(Single Aisle)

Industry feedback:

« Specific Power, good metrics
for powertrain comparisons.
Example: Aviation & EV
powertrain

* Cruise Efficiency, important
metrics for aviation and wind
generators

« Specific Torque, another
metrics to compare motors
and thermal capabilities.

* Volumetric density, also a
good metrics for aviation
application for drag and noise
constraints



Aviation: Importance of thermal management of electric motor

Increasing losses with
Increasing temperature

Resistivity of Copper

Reduced power & torque at
elevated temperatures

Maximum Power Capability @ 25°C and 125°C

Reduced efficiency with

iy
o 238 W (25°C) / _
Ezg 172 W (125°C) ; /‘/ :
::: ‘ : // ;
75 2.88 Nm = /V
50
2: r 1 0 .uAA‘/‘/A .
0 1.0 2.0 3.0 v m T ) 30
T(Nm) .
Passive two- Pumped two-
Air natural Air forced Liquid phase cooling phase cooling
convection convection cooling (heat pipe) (likely in the future)

Processors & power electronics cooling over time

¥
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Housing fins

Shaft-driven fan Ethylene glycol (Nissan)
2D - /% — D\
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Aviation: Integrated multiphysics co-design
(electric/electromagnetic/thermal/mechanical)

Identification of topologies/architectures,
materials, and manufacturing

methodologies, embedded cooling with s
supercritical fluids to achieve the targeted
metrics:

» Utilizes low resistance/near source cooling
» High power density
» High efficiency

» Compact Co-desi  slect i

: O-aesign or electromagnetics,
> Reliable L Inactive materials, thermal, and
» Meets roadmap to commercialization power conditioning is a must

Grpa-e



Aviation: Light weight motors, what’s possible?

~

Innovative
. Manufacturing
Innovative

Designs

Innovative
Materials

Section Coolant
Graphite heat pipes \
: \

Co-design process:
use of advanced
Inactive materials

and electromagnetic

BMW i3

Qraphite sheef acting as heat shunt befween widings -3/

State of art Additive/advanced Advances in insulation Embedded cooling Optimization
manufacturing of motor materials and use of highly
winding and other potent _fdes
components (supercritical etc.)
B SRR G » “Challenges in 3D printing of high conductivity copper” — IPACK2017-74306
Qﬁljd °@ + “Cooling of windings in electric machines via 3D printed heat exchanger” — ECCE 2018 20

CHANGING WHAT'S POSSIBLE » “Advanced cooling concepts for ultra-high-speed machines” — ECCE Asia 2015



BREAKOUT SESSION
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Breakout sessions — Morning and Afternoon
Jackson, Lee, and Jefferson Rooms — Lobby Level
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Morning breakout session
Jackson, Lee, Jefferson Rooms

Proposed discussion topics:
» Participant introductions
» Seed guestions:

1. How pertinent is the chosen application and our proposed metrics? ARPA-E hard goals?
AC or DC power?

What type of motor: permanent magnet, induction, superconducting, etc.?

Choice of developing integrated system vs motor only?

End of project prototype power scale? 10 kW, 100 kW, ..... , 1 MW?

Should the voltage be specified?

Thoughts on cruise requirements vs take-off (3x requirements from cruise)?

Safety, reliability, durability? What’s needed for aviation?

9. Other aspects?

» 15 - 20 minutes before the end of the session: each participant to give a 30
seconds to 1 minute summary

N O A wN
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Afternoon breakout session — 1/3

Motor centric (Jackson Room) Grigorii Soloveichik, Zia
Proposed discussion topics:

» Participant introductions
» Seed questions:

1.

2.

NOoO O AW

8.

What are the key technological paths to very high specific power? Risk and barriers, high-
risk/high reward paths?

What are the physical limitations that will prevent achieving high specific power (saturation,
etc.)?

Gearbox or gearless options?

How important is the co-design of electromagnetics, power electronics, thermal management?
Should a potential program specify the input voltage (motor specifications)?

What should be the cost metric for a nt" of a kind? How do you normalize it (e.g. $/kW, other)?

What should be the program needs for the design, conception and demonstration of new
electric motor? (duration, logistics, resources, etc.)

Other aspects?

» 15 - 20 minutes before the end of the session: each participant to give a 30 seconds
to 1 minute summary

Grpa-e



Afternoon breakout session - 2/3
Integration centric (Jefferson Room) Chris Atkinson, Dipankar
Proposed discussion topics:

» Participant introductions
» Seed questions:

1.

O©CONOO WD

What are the key technological paths to very high specific power? Risk and barriers, high-
risk/high reward paths?

Should both volumetric and gravimetric power density be specified?

Final demonstration testing at relevant operating conditions? Options to consider?

Are there other metrics a potential program should consider?

Comments on electric motors improvements vs power electronics improvements?

How important is the co-design of electromagnetics, power electronics, thermal management?
Should the voltage be specified?

What should be the cost metric for a nt" of a kind? How do you normalize it (e.g. $/kW, other)?

What should be the program needs for the design, conception and demonstration of integrated
system? (duration, logistics, resources, etc.)

» 15 - 20 minutes before the end of the session: each participant to give a 30 seconds
to 1 minute summary

Grpa-e



Afternoon breakout session — 3/3
Thermal management centric (Lee Room) Dave Tew, Vivien
Proposed discussion topics:

» Participant introductions
» Seed questions:

1.

B W

o o

1.

Role of thermal management to enable very high specific power? Risk and barriers, high-
risk/high reward paths?

What should be the cooling approach? Single phase, two-phase?
How about the use of supercritical fluids?

Specific metrics to judge the merit of the thermal management system? Coefficient of
Performance, Thermal Resistance, others?

Can/how the progress in microelectronic cooling be transferred to electric motor?

What should be the program needs for the design, conception and demonstration of new
electric motor? (duration, logistics, resources, etc.)

Other aspects?

> 15 - 20 minutes before the end of the session: each participant to give a 30 seconds
to 1 minute summary

Grpa-e



Recall: NOT of Interest

» This potential program is about integration, not the development of new power
electronics alone

» Software development alone
» Paper studies

» Material development alone without integration into targeted system or sub-
system

Grpa-e



