SOIL SENSING FOR YIELD AND ENERGY-SMART FARMING – SOIL MANAGEMENT

CRISTINE MORGAN | PROFESSOR OF SOIL SCIENCE
DEPARTMENT OF SOIL & CROP SCIENCES
Outline

- Introduction to Soil Properties & Fertility
- Energy-Smart Farming: Soil Perspective
Soil as a $3 + 1$ phase system

Sensing for Soil Nutrients requires discrimination between the soil phases

- Solids
- Liquids
- Gas
- + Roots
Soil Composition

Solids
Bulk Density/Porosity

Soil Minerals (Physical)
• Particle Size Distribution
• Mineralogy of silicate clays
• Mineralogy of size-fractions

Soil Minerals (Chemical)
• Cation Exchange Capacity
• Exchangeable Cations and Ions
• pH

Liquids
Water-filled pore space

Water-filled pore space as a function of matric potential

Extractable water chemistry

Gasses
Air-filled pore space as a function of water content or potential

Gas Composition

Organic Carbon
Soil Minerals (Chemical)

- Cation Exchange Capacity
 - Sandy Soil: 3 to 5 meq 100g\(^{-1}\)
 - Clayey Soil: 30 to 40 meq 100 g\(^{-1}\)
- pH
 - 5.5 to 8.5 (Temperate Agricultural Soil)
Energy Inputs in Soil Management

Optimize On-Farm Soil Ecosystem Services

1. Plant-Soil-Nutrient Interactions
 1. On-Time and Spatially Precise Applications
 Knowledge Gaps: sensing when, what, and where
 2. Manage Soil Organic Matter for on-time delivery of nutrients
 Knowledge Gaps: Soil; Cropping System, Manager specific

2. Plant-Soil-Water Interactions
 1. Reduce Tillage and controlled traffic systems: available
 2. Manage for optimal Soil Structure
 Knowledge Gaps (quantify soil structure; identify optimal; identify management)
 3. Manage Compaction
 Knowledge Gaps (mapping; thresholds; pan-busting cover crop)
Optimize Off-Farm Soil Ecosystem Services

1. Non-Point Erosion
 Fills reservoirs; contributes to poor water quality; harms ecosystems
 Knowledge Gaps:
 1. Quantifying Off Farm Impacts linked to Soil Management
 2. Needs Hydrology Models that respond to Soil Health (Soil Structure)

2. Non-Point Nutrient loss
 Impact water recreation (human health, fishing, aquatic ecosystems)
 1. Knowledge Gaps: Same as above

3. Soil-Water Interaction
 Loss of water capture create flashiness in flooding
 Knowledge Gaps: Same as above
Soil Management for Farming Energy Smart?

1. Soil-Plant-Nutrient Management Timing
 (-) Minimal yield improvement
 (+) can reduce energy use requirements
 (+) can improve off-farm energy needs (Engineering solutions to pollution)
 Technologies: sensors that see soil water nutrients; good soil maps

2. Soil-Water-Plant Interactions
 (+) Yes yield improvements
 (+) Yes on-farm energy savings
 (+) Yes off-farm energy savings (probably 10 to 100xs) on farm
 Technologies: sensors that quantify soil structure; hydrology models that biophysically respond to soil health; compaction mapping strategies; compaction thresholds for yield
Thank You

Observe it, Measure it, Model it