SOIL SENSING FOR YIELD AND ENERGY-SMART FARMING – SOIL MANAGEMENT

SOIL SCIENCE TEXAS A&M UNIVERSITY CRISTINE MORGAN | PROFESSOR OF SOIL SCIENCE DEPARTMENT OF SOIL & CROP SCIENCES

TEXAS A&M UNIVERSITY®

ARPA-E Workshop ENERGY SMART FARMING February 13-14, 2018

- Introduction to Soil Properties & Fertility
- Energy-Smart Farming: Soil Perspective

SOIL SCIENCE TEXAS A&M UNIVERSITY

Soil as a 3 + 1 phase system

Sensing for <u>Soil Nutrients</u> requires discrimination between the soil phases

Solids Liquids Gas + Roots

Soil Composition

Soil Minerals (Chemical) •Cation Exchange Capacity •Exchangeable Cations and Ions •pH

Organic Carbon

SOIL SCIENCE

FEXAS A&M UNIVERSITY

Liquids Water-filled pore space

Water-filled pore space as a function of matric potential

Extractable water chemistry

<u>Gasses</u>

Air-filled pore space as a function of water content or potential

Gas Composition

Soil Nutrient Availability

Soil Minerals (Chemical)

- Cation Exchange Capacity
 - Sandy Soil 3 to 5 meq 100g⁻¹
 - Clayey Soil 30 to 40 meq 100 g⁻¹

• pH

5.5 to 8.5 (Temperate Agricultural Soil)

strongly acid			medium acid	slightly acid	very slightly acid	very slightly alkaline	slightly alkaline	medium alkaline	stre	strongly alkaline		
-					ni	trogen					-	-
					p	nospho	orus					
						otassiu	1			1		
											1	
					SI	lphur	1				1	
					Cá	alcium			Constant of the owner of the			
					m	lagnes	ium					
		in	on							1		
		m	angan	ese							-	-
		b	oron		Torono (California da California							
		C	opper a	& zinc		1						
						olybde	enum			1		
4	.5 5	.0 5	.5 6	.0 0	6.5 7	.0 7	.5 8	3.0 8	.5 §	9.0	9.5	10

Energy Inputs in Soil Management

Optimize On-Farm Soil Ecosystem Services

- 1. Plant-Soil-Nutrient Interactions
 - 1. On-Time and Spatially Precise Applications

Knowledge Gaps: sensing when, what, and where

2. Manage Soil Organic Matter for on-time delivery of nutrients

Knowledge Gaps: Soil; Cropping System, Manager specific

- 2. Plant-Soil-Water Interactions
 - 1. Reduce Tillage and controlled traffic systems: available
 - 2. Manage for optimal Soil Structure

Knowledge Gaps (quantify soil structure; identify optimal; identify management)

3. Manage Compaction

Knowledge Gaps (mapping; thresholds; pan-busting cover crop)

Energy Inputs in Soil Management

Optimize Off-Farm Soil Ecosystem Services

1. Non-Point Erosion

Fills reservoirs; contributes to poor water quality; harms ecosystems Knowledge Gaps:

- 1. Quantifying Off Farm Impacts linked to Soil Management
- 2. Needs Hydrology Models that respond to Soil Health (Soil Structure)
- 2. Non-Point Nutrient loss

Impact water recreation (human health, fishing, aquatic ecosystems

1. Knowledge Gaps: Same as above

3. Soil-Water Interaction

Loss of water capture create flashiness in flooding

Knowledge Gaps: Same as above

Summary

Soil Management for Farming Energy Smart?

- 1. Soil-Plant-Nutrient Management Timing
 - (-) Minimal yield improvement
 - (+) can reduce energy use requirements
 - (+) can improve off-farm energy needs (Engineering solutions to pollution)

Technologies: sensors that <u>see soil water nutrients</u>; good soil maps

- 2. Soil-Water-Plant Interactions
 - (+) Yes yield improvements
 - (+) Yes on-farm energy savings
 - (+) Yes off-farm energy savings (probably 10 to 100xs) on farm

Technologies: sensors that quantify soil structure; hydrology models that biophysically respond to soil health; compaction mapping strategies; compaction thresholds for yield

Thank You

SOIL SCIENCE

TEXAS A&M UNIVERSITY

