
GTO Overview and Perspectives on EGS

Sean Porse, EGS Technology Manager Geothermal Technologies Office

September 21, 2018

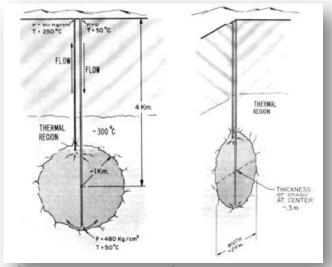
U.S. Geothermal Resources

Adapted from Cladouhos, 2018 (SGW)

International State of EGS

Shyi-Min Lu, 2018 (Renewable and Sustainable Energy Reviews)

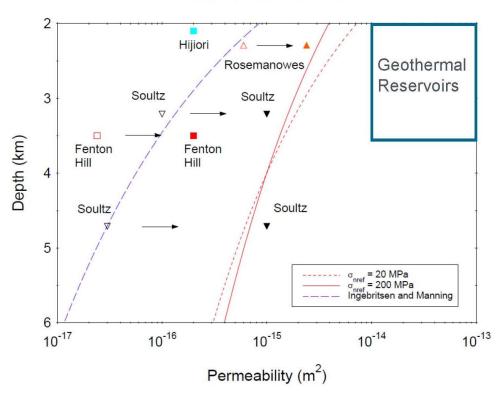
Site name (Development period)	Country	Reservoir lithology	Development attribution	Important feature
Fenton Hill (1974–1995)	United States	Granite	Greenfield	The world's first EGS site, and there were 60 kW binary power system demonstrations.
Rosemanowes (1977–1991)	United Kingdom	Granite	Greenfield	Laid the foundation of EGS development for the followed Eden and Redruth in the United Kingdom.
Hijiori (1981–1986)	Japan	Granodiorite	Greenfield	Japan's first EGS site, and there were 130 kWe binary power system demonstrations.
Fjällbacka (1984–1989)	Sweden	Granite	Greenfield	500 m deep shallow EGS site, applicable as a heat pump greenhouse.
Ogachi (1989–2001)	Japan	Granodiorite	Greenfield	Combined with CO ₂ sequestration and CO ₂ -EGS test.
Basel (2005–2006)	Switzerland	Granite	Greenfield	Tests were suspended due to earthquake, and the EGS relevant specifications were introduced.
Insheim (2008-present)	Germany	Granite	Greenfield	Power plant of 4 MWe is constructed in commercial grade.
Landau (2004-present)	Germany	Granite	Greenfield	2.9 MWe/3 MWt power plant, in commercial grade, and in conjunction with greenhouse.
Groß Schönebeck (2007-present)	Germany	Sandstone/conglomerate	Greenfield	Hydraulic fracturing process is in progress, and three units of a total installed capacity of 1 MWe operated in binary power generation cycles have been built in the site.
Soultz (1987-present)	France	Granite	Greenfield	The first commercial-scale EGS power plant in France with installed capacity of 1.5 MWe.
KiGam at Pohang (2010-present)	South Korea	Granodiorite	Greenfield	1.5 MWe-targeted demonstration plant, site test in progress.
Habanero (2003-present)	Australia	Granite	Greenfield	1MWe demonstration plant is in operation, targeting for 40 MWe in the first phase, and the overall objective is
				450 MWe.
Paralana (2005-present)	Australia	Sedimentary/metamorphic	Greenfield	Targeting for 3.75 MWe power plant, and fluid cycle test in progress.
Newberry (2009-present)	United States	Marl, quartz porphyry, granite	Greenfield	 Hydraulic fracture and fluid circulation had been completed in 2013.
				Use of the thermo-degradable zonal isolation materials (TZIM) to shorten the hydraulic fracturing process.
The Geysers (2009-present)	United States	Metasandstone	Near field	 5 MW demonstration plant in progress.
				Urban wastewater reinjection to the reservoir to increase capacity.
				Use the method of cold crack to create fractures in the surrounding of wells.
Raft River (2009-present)	United States	Granite	Near field	 5 MWe EGS demonstrated plants are targeted by 2020, and the flow rate is at least 20 kg/s per well.
				The method of cold crack is used to create fractures in the surrounding of wells.
Bradys Hot Spring (2008-present)	United States	Rhyolite, metamorphic substrate	In field	Use of the existing geothermal wells to increase capacity, and the establishment of 2-3 MWe EGS power plant in commercial-scale is targeted.
Desert Peak (2002-present)	United States	Metamorphic tuff	In field	 The establishment of a 1.7 MWe power plant in commercial-scale was scheduled at end of 2013.
		•		2. Mix the cold cracking, shear, chemical and other hydraulic fracturing technologies.


EGS State of Technology:

LESSONS LEARNED

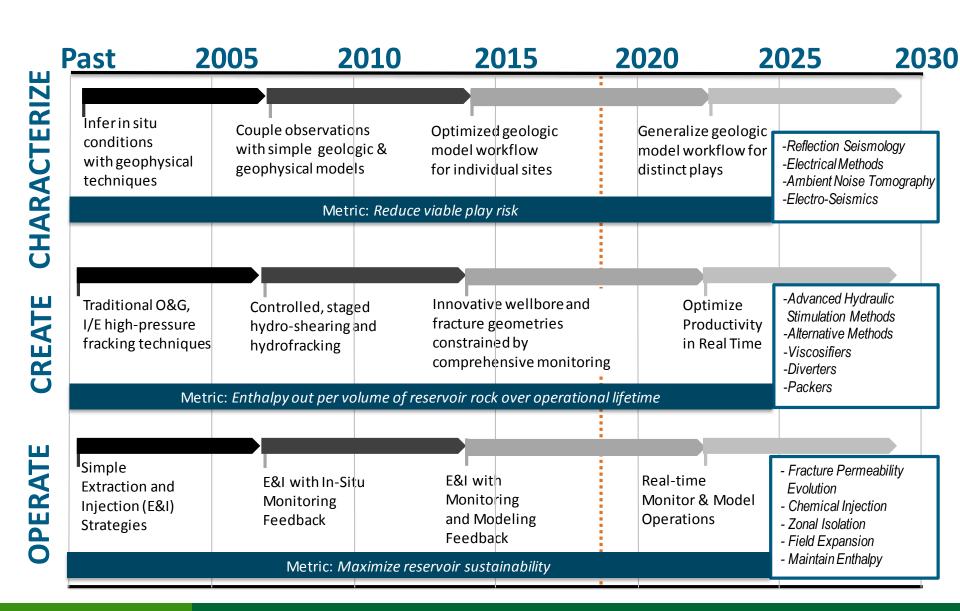
- Improved understanding of fracture in crystalline rocks
 - Natural reactivation and induced fracturing Geochemical implications
- **Drill fracture drill again**Target enhanced permeability zones
- Lowered water loss and enhanced flow impedance
- Harnessed induced seismicity
 Improved monitoring/management
- Multi-zone stimulations
 Path to increased productivity/well

Fenton Hill, Adhoc committee on rock melting drills The Atom, 1971

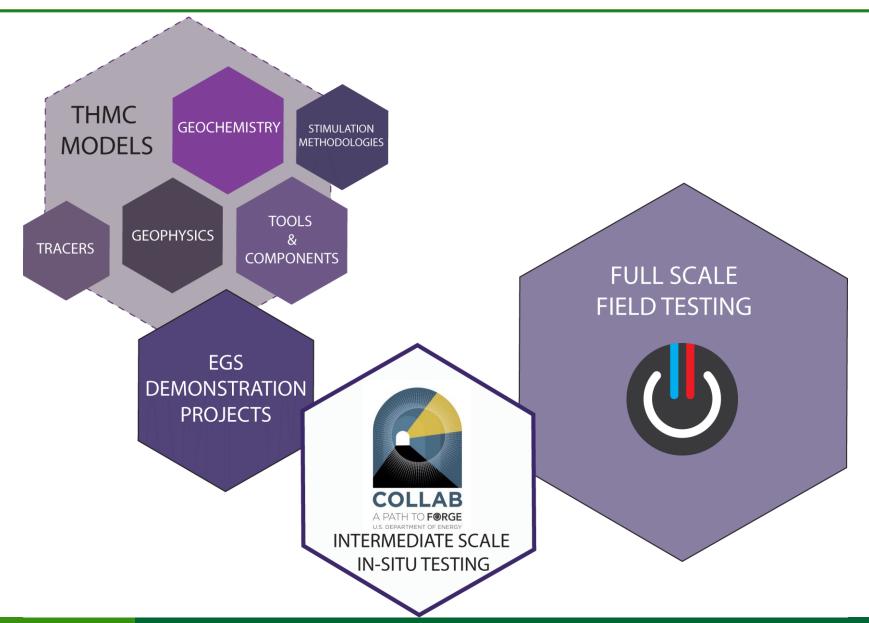

Originally proposed model for HDR Robinson et al, 1971

EGS Technical Headroom

CRITICAL NEEDS

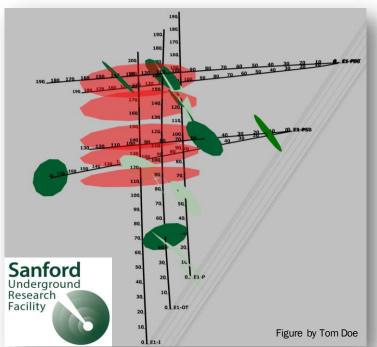

- Reservoir Access: New well geometries, optimized drilling
- Reservoir Creation: Characterization of local stress, chemical potential, and thermal pathways, zonal isolation, novel fracturing methods
- Productivity: Increasing flow rates without excessive pressure needs or flow localization
- Sustainability: Maintain productivity w minimal thermal drawdown, fracture closure, water losses, seismicity

Willis-Richards Model



Permeability increase (open to closed symbols) at EGS sites compared with natural geothermal reservoirs and model results (Willis-Richards et al., 1996)

EGS Technical Headroom


EGS Program Strategy

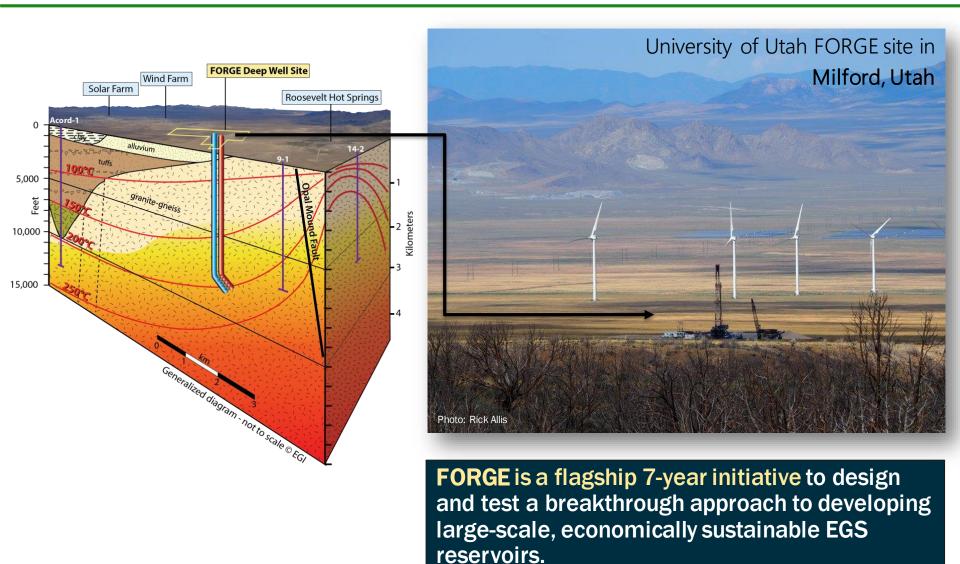
Mine Scale: EGS Collab

- EGS Collab brings together a National Laboratory-led team comprised of eight national labs, academia, and industry.
- Experiment 1 at the 4850 level is underway objectives include:
 - Research hydraulic fracturing with predictive modeling
 - Stimulation using LBNL's SIMFIP tool
 - Long term flow testing
- Team is currently analyzing stimulation results in anticipation of executing long-term flow testing in late fall 2018.

Field Scale: FORGE

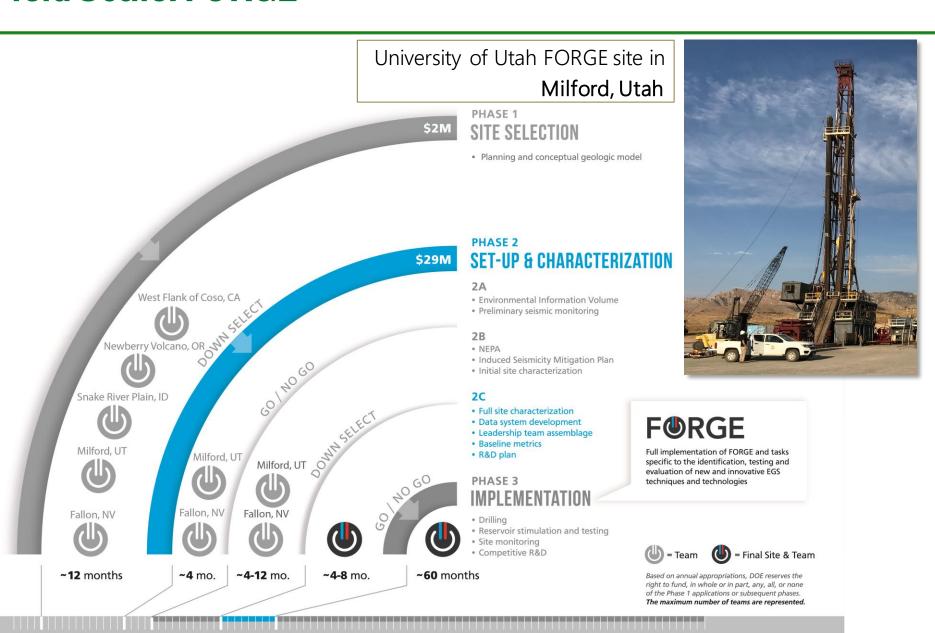
DIVERSE & TRANSFORMATIONAL

research in subsurface engineering and geoscience


WORLD-CLASS LABORATORY

Opportunity for the community to take advantage of a world-class, fully characterized & controlled environment

SHARE, COMMUNICATE, EDUCATE


Data and findings to the broader technical and non-technical community

Field Scale: FORGE

OFFICE OF ENERGY EFFICIENCY & RENEWABLE ENERGY

Field Scale: FORGE

