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Project Objectives
» AC OPF Theory

— Math foundation for convex relaxation of OPF

» DER optimization algorithms

— Balanced mesh networks
— Unbalanced radial networks
— Centralized and distributed algorithms

»Modeling

— SCE distribution systems, feeders & secondary circuits
»Implementation & demo
» Tech-2-market



Project Objectives

»Uniqueness
— Guaranteed optimality and convergence
— New framework for algorithm design

» Challenges
— Mesh networks, unbalanced networks
— Distributed algorithms with guarantees (stab, perf)
— Numerical stability

» Performance metrics

— Distributed algorithm for unbalanced radial network
* size (demo’ed): 2,000 buses
* time: 5 mins
« optimality gap: 5%

Algorithms scalable to 10K nodes and beyond



2014 accomplishments

»Convex relaxation of unbalanced network
» Distributed relaxation algorithms

» Distribution system modeling
»Implementation & demo
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2014 accomplishments

»Convex relaxation for unbalanced network

— Theory
« Chordal relaxation (exploits sparsity)
« Branch flow model, bus injection model

— Algorithms

« Extension of semidefinite algorithms to unbalanced
radial networks

» Centralized and decentralized algorithms

— Simulations
« Centralized alg: SCE 2,000-bus, 3 mins, 0% gap
* Distributed alg: IEEE 123-bus, 3 mins, 0% gap
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Simulation results (Aug 2014 review)

#instances (4 week) 8,064 8,064
#instances solved

(convergence) 100% 80%
suboptimality gap 0% 5%
(exactness)

solution time

(per instance) 2 min 3 mins

Uses generalized BFM chordal relaxation using Rossi (~2000-bus) feeder
Much more numerically stable than BIM

Ran on 16 servers
Exactness (ev ratios): 16.6M ratios (= 2064 lines/instance x 8064 instances)



2014 accomplishments

»Distributed relaxation algorithms

— Theory and algorithms: build on
« Convex relaxation of OPF
* Branch flow model
- ADMM

— Simulations
» Balanced radial network: 2,000 buses, 3 mins, 0%
optimality gap
« Unbalanced radial network: ~100 buses, <4 mins, 0%
optimality gap
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Computation time —I EDON

4 )
2,065 buses 64 links 1,114 1,153 sec 0.56 sec
1,313 54 671 471 0.36
792 53 524 226 0.29
363 36 289 66 _ 0.18
108 6 267 16 0.74

» Suboptimality gap : 0%
« Compute time in distributed execution

Scalability trend
Regression: T = 9.8x107N + 8.6x103D
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Comparison: ADMM-based a;lgs '

Huge speedup

B Recent distributed OPF algorithms (inc ours) are
ADMM-based

B All these algorithms solve the ADMM
subproblems in each update iteratively

B Ours solves them in closed form

Our algorithm 1.7 x 104 sec 5.1 x 104 sec
CVX 2 x 101 sec 3 x 101 sec
speedup 1,176x 588x

per-bus computation time : time to solve 1 sample ADMM iteration for Rossi circuit
with 2,065 buses, divided by 2,065, for both algorithms



2014 accomplishments

» Distribution system modeling

— SCE systems
6 feeders (4KV, 12KV)
» ~15,000 buses

» <10% error compared with substation measurements
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2014 accomplishments

»Implementation & demo

— SCE Rossi feeder
« ~2,000 buses
* DER: inverters, HVAC, EV, pool pumps
- Unbalanced multiphase
« 4-week simulations
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Remaining tasks

» Distributed OPF for unbalanced network
— SCE Rossi feeder: ~2,000 buses
— time: 5 mins
— optimality gap: 5%
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Tech-to-market

»T2M objectives

— Validation: market, technology
»Key activities

— |AB, Berkeley Haas C2M project

— Prototype
— Pilots, VC and strategic investments
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[ Distributed

]

Graphical User
Interface

)

Controls

[Grid Simulation]

Extern

Statistics
al forecasts

Controller
t Stat Timestamp
Configurati Controls Statistics Configuration
External | forecasts ! Data
[ Internet
State Timestamp Data

[Cloud Services] |




Tech-to-market
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Post ARPA-E goals
*New R&D

— Builds on existing results for fast timescale dynamic
control & optimization

— Scalable distributed real-time control with guaranteed
stability and performance

»Implementation & pilots
— Commercial grade software for DERMS
— Pilots with industry

» Tech-to-market



Conclusions

»Most important contributions
— Math foundation for convex relaxation of OPF
— Relaxation algorithms: unbalanced radial, distributed
— Detailed feeder models
— Implementation & demo

»Challenges
— Numerical instability, scalability
— Data for realistic and detailed models
— T2M: prototype, pilots
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