

DATA CENTER COOLING CLASSIFICATIONS

Cooling Classification	Air	Cold Plate Single-Phase	Cold Plate 2-Phase	Immersion	Spray/Jet Cooling
Cooling Method	Data Center Air Conditioners, Water/Refrigerant to Air Heat Exchangers	Water (treated), Water w/Propylene Glycol	Refrigerant: R134a, R515B, R1233zd, Engineered Fluids (3M Novec, HFE-7000)	Dielectric Fluids (Engineered), Dielectric Fluid (Oils) Refrigerants (R134a, Others)	Fluorinates (FC-75) Water
Examples	General compute, Hyperscale	Supercomputers, HPC, DGX Station, Gaming PCs	HPC, Multi-Node AI, DGX Station, Telecom/Edge	Mining, HPC, Intense Sustained Workloads	HPC 150W up to 1000W Electric vehicles
Advantages	Commonly Available	Proven Mainframe/HPC applications, Water system exist at data centers, Low pPUE vs. air cooling	Telecom Standards Alignment, 2-Phase more efficient than Water, Non-Conductive	No Cold Plates, 2-Phase, Inexpensive Oils	Higher HTC, wormer coolant, Reduced TCO, Eliminate hotspot
Issues	Upward Scale Limitations, Cooling Constrained, Noise	1-Phase Only, Electrically Conductive, Primary & Secondary Water Treatment	High Pressure, Flow distribution, Not Commonly used in Data Centers	Oils Combustible, Material Compatibility, Serviceability, Flammability	Higher cost, complexity, high pressure drop, clogging probability
Cooling Scale (bounding approximations)	Air: -60kW/Rack	PG25: ~110kW/Rack	R134a: ~175kW/Rack	Pool Boiling (FC-72): max 3 W/cm²K Spray Boiling (R134a): max 9 W/cm²K Jet Impingement (R134a): max 10 W/cm²K	Spray cooling(water): max 50 W/cm2 K Water multi-jet cooling: max 100 W/cm²K

HYBRID LIQUID-TO-REFRIGERANT COOLING

HYBRID REFRIGERANT-TO-REFRIGERANT COOLING

PUE/TUE ANALYSIS OF HYBRID DATA CENTERS

A (A1, A2, ..., A5)

B (B1, B2, ..., B4)

b

A (A4, A5))

B (B3, B4))

A (A1, A2, A3)

B (B1, B2)

Cooling Distribution Unit (CDU) consumes less

power relative to CARH/CRAC/RHX. (f<e)

Micro channel

Cold Plate

❖ *PUE* & *TUE* drops as a result of more efficient performance!

1.19

18 %

 $\begin{tabular}{ll} & \end{tabular} \end{tabular} \begin{tabular}{ll} & \end{tabular} \end{tabular} \begin{tabular}{ll} & \end{tabular}$

1.45

- Less cooling equipment power consumption
- Lower facility power usage

TUE

REFRIGERATION SYSTEMS DESIGN & ANALYSIS TOOLS

Cooling Design Challenges

- Two Phase CDUs
- Two Phase Cooling Loops
- Rack & Row Manifolds Design
- Parallel and Serial Flows
- Two Phase Quality Control
- Choice of Refrigerants

Potential Choices of Refrigerants

- R134a (A1, MP, GWP=1430)
- R1233zd (A1, LP, GWP=1)
- R513a (A1, MP, GWP=631)
- R515b (A1, MP, GWP=293)
- R1234yf (A2L, GWP=4)

Rack Level Deployment of Refrigerant Cooling

Experimental Results Post Processing Tool

Cold Plate Simulating Tool (No Tools Currently Available)

Tools Needs to be Developed for:

- Analyzing the experimental results
- Simulating refrigerant cold plates
- Analyzing system performance

Developmental Tools:

- Refrigerants' properties
- Thermodynamics laws
- Experimental results
- Empirical correlations

Data Center Facility Simulating Tool (Engineering Equation Solver)

AIR TO SINGLE-PHASE LIQUID TO TWO-PHASE REFRIGERATION ROADMAP

Summary and Conclusions

- Data Center industry is greatly challenged due to substantial increase in chip heat density and power dissipation
- · Majority of data center will go through a transition from 100% air cooled to hybrid of air and liquid cooling
- Direct to chip liquid cooling design using cold plates, cooling loops, rack/row manifolds and CDUs using treated water (DI, PG25)
 are going to be dominant design
- Transition from single phase to two phase liquid cooling will happen much sooner than air to single phase liquid cooling transition
- Currently challenges with two-phase data center refrigeration design;
 - Lack of two-phase detailed simulation tools
 - Difficulty in serial vs parallel flow distribution

- Two phase CDUs availability
- Phasing out of R134a due to high GWP

