Three main disruptive forces will fundamentally transform how people and things move in the future.

- **Changing consumer and societal demands**
 - Moving people
 - Moving goods

- **Mobility as a Service**

- **Autonomous Vehicles**

- **Electric Vehicles**

- **Mobility Value Chain**

- **Collaboration in the future Mobility Ecosystem**
This is one of the most pervasive global mega-trends and will have far reaching implications

Industry execs believe that...

- Up to 50% of consumers will not want to own a car, as new mobility services begin to meet consumer needs.

Passenger miles travelled will increase...

- Up to 10% following the growth of the mega-city and their suburbs.

Cost per mile could go down...

- Up to 40% due to removing the driver cost, longer vehicle lives, new energy sources, technologies and mobility scaling.

- Miles per vehicle could increase...

 - Up to 5x as fleet services use vehicles more efficiently.

The number of major ecosystem players will decline...

- As sector convergence leads to consolidation.

Sources: Department for Transport, KPMG Global Auto Executive Survey 2017, KPMG UK Mobility 2030 analysis.
Autonomous drive is coming faster than many realize

2016
Autonomous features are already commercially available and impacting accident rates:
• Collision warning & brake support have been shown to reduce incidents of rear-end crashes with frontal impacts by 45%¹
• Tesla’s autopilot autonomy feature demonstrated a 50% reduction in the number of accidents²

Source: 1) Evaluation of Rear-End Collision Avoidance Technologies, Volvo Car Corporation; 2) Eletrek; 3) Wired; 4) Nissan Motors; 5) Strategy Analytics; 6) CNN, Volvo; 7) Adam Jones, Morgan Stanley; 8) KPMG analysis; 9) HIS; 10) LUX Research; 11) Navigant Research; 12) Institute of Electrical and Electronics Engineers; 13) Raj Nair, Ford Group Vice President

2020
The number of car accidents falls by 15%⁶

2025
Ford to sell line of fully autonomous vehicles¹³

2030
Fully autonomous cars without manual control options become available⁹
Full and partially autonomous cars will be an $87 billion industry¹⁰
The number of car accidents falls by 50%⁸

2035
75% of all the passenger vehicles bought will be fully autonomous¹¹

2040
75% of the traffic will be full or partially autonomous vehicles¹²

The number of car accidents falls by 70%⁸

9% of vehicles on the road will

Fully Autonomous vehicles become commercially available in the U.S., Toyota, Nissan, and Volvo offer models, Tesla to follow soon after³, 4, 6

2026
100% of cars sold will have some level of autonomy⁷

2020
The number of car accidents falls by 15%⁶

2025
Ford to sell line of fully autonomous vehicles¹³
Uber demonstrated that Mobility as a Service (MaaS) can very quickly and materially unlock value (even with “driver required”)

Uber captured $1B from a $200M local taxi market – how did they do that?

$1B in Bay Area Uber revenue (2015)

New mobility revenue

$200M Bay Area taxi market

Disruption occurred in roughly five years after 2010 launch

so this can happen very fast

Note: Uber revenues are gross paid by passengers

Sources: Business Insider; LA Times

In fact, Uber is expanding very rapidly

Uber Global Bookings Revenue ($B)

$0.7 $2.9 $10.8 $26.2

2013 2014 2015 2016 (F)

CAGR 236%
Uber networks already provide access to 69% of US population in and around most cities

New York City MSA
Type A: Dense urban center, large suburban metro area, high public transit usage
Average Wait for Closest Uber: 6:09
n = 27,908

Chicago MSA
Type B: Significant urban center, sprawling suburban metro area, medium public transit usage
Average Wait for Closest Uber: 6:43
n = 12,928

Los Angeles MSA
Type C: Unclear urban center, vast suburban metro area, low public transit usage
Average Wait for Closest Uber: 5:24
n = 18,107

1) Census tracts were sampled a minimum of four times. Those that returned an available Uber at least once were defined as having regular Uber service
2) Average wait time calculation is population weighted and only includes areas where Uber is available
This combined with autonomy will drive over a trillion mile increase in Passenger Miles Traveled (PMT) for underserved populations

U.S. personal miles traveled (PMT) per capita 2014–2050 (Kmiles)

Parents can be everywhere at the same time

82% of people asked in focus groups would want mobility options for kids

Note: (a) Discounted 25 percent from U.S. Bureau of Transportation Statistics (BTS) total Vehicle-miles traveled (VMT) for 1995, 2001, 2009, 2014 (assumed to be commercial miles), (b) multiplied by NHTS occupancy rates applied 2009 rate to 2014 numbers. Source: U.S. BTS data, NHTS data, U.S. Census data, KPMG Analysis

“I do not have to take keys away from dad”

79% of people asked in focus groups would want mobility options for seniors
By 2040 autonomy and mobility as a service adoption will reshape car ownership models and reset the market...

VMT grows more rapidly than PMT due to a drop in average occupancy per vehicle

Growth in the car parc declines as AV MaaS vehicles eliminate the need for a portion of personally owned vehicles

Non-autonomous vehicle sales fall, but are replaced by autonomous personal and MaaS vehicles

Source: KPMG Analysis
Note: Passenger vehicle VMT analysis excludes non-MaaS commercial POV
We will likely see a fundamental reinvention of the car around mission segments

Shift from multi-mission share by vehicle class...

US light vehicle market shares by segment

<table>
<thead>
<tr>
<th>Segment</th>
<th>A/B</th>
<th>C</th>
<th>D</th>
<th>Pickup</th>
<th>SUV</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>Market</td>
<td>17.5M units</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Share</td>
<td>0%</td>
<td>25%</td>
<td>50%</td>
<td>75%</td>
<td>100%</td>
<td></td>
</tr>
<tr>
<td>Ford</td>
<td>10%</td>
<td>15%</td>
<td>20%</td>
<td>25%</td>
<td>30%</td>
<td></td>
</tr>
<tr>
<td>Hyundai</td>
<td>5%</td>
<td>10%</td>
<td>15%</td>
<td>20%</td>
<td>25%</td>
<td></td>
</tr>
<tr>
<td>Renault-Nissan</td>
<td>15%</td>
<td>20%</td>
<td>25%</td>
<td>30%</td>
<td>35%</td>
<td></td>
</tr>
<tr>
<td>Honda</td>
<td>10%</td>
<td>15%</td>
<td>20%</td>
<td>25%</td>
<td>30%</td>
<td></td>
</tr>
<tr>
<td>Fiat Chrysler</td>
<td>5%</td>
<td>10%</td>
<td>15%</td>
<td>20%</td>
<td>25%</td>
<td></td>
</tr>
<tr>
<td>Toyota</td>
<td>25%</td>
<td>30%</td>
<td>35%</td>
<td>40%</td>
<td>45%</td>
<td></td>
</tr>
<tr>
<td>GM</td>
<td>20%</td>
<td>25%</td>
<td>30%</td>
<td>35%</td>
<td>40%</td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td>25%</td>
<td>30%</td>
<td>35%</td>
<td>40%</td>
<td>45%</td>
<td></td>
</tr>
</tbody>
</table>

Global light vehicle market shares by segment

<table>
<thead>
<tr>
<th>Segment</th>
<th>A/B</th>
<th>C</th>
<th>D</th>
<th>Pickup</th>
<th>SUV</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>Market</td>
<td>88.7M units</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Share</td>
<td>0%</td>
<td>25%</td>
<td>50%</td>
<td>75%</td>
<td>100%</td>
<td></td>
</tr>
<tr>
<td>Ford</td>
<td>10%</td>
<td>15%</td>
<td>20%</td>
<td>25%</td>
<td>30%</td>
<td></td>
</tr>
<tr>
<td>Honda</td>
<td>5%</td>
<td>10%</td>
<td>15%</td>
<td>20%</td>
<td>25%</td>
<td></td>
</tr>
<tr>
<td>Fiat Chrysler</td>
<td>15%</td>
<td>20%</td>
<td>25%</td>
<td>30%</td>
<td>35%</td>
<td></td>
</tr>
<tr>
<td>Toyota</td>
<td>10%</td>
<td>15%</td>
<td>20%</td>
<td>25%</td>
<td>30%</td>
<td></td>
</tr>
<tr>
<td>GM</td>
<td>10%</td>
<td>15%</td>
<td>20%</td>
<td>25%</td>
<td>30%</td>
<td></td>
</tr>
<tr>
<td>Renault-Nissan</td>
<td>15%</td>
<td>20%</td>
<td>25%</td>
<td>30%</td>
<td>35%</td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td>25%</td>
<td>30%</td>
<td>35%</td>
<td>40%</td>
<td>45%</td>
<td></td>
</tr>
</tbody>
</table>

Notes: (1) Other in US includes Fuji Heavy, BMW, Daimler, Mazda, Mitsubishi, Tata and other OEMs. Other in global includes PSA, Suzuki, SAIC, BMW, Daimler, Mazda and other OEMs. Source: LMC Global Automotive Sales Forecast (Q4 2015)
Changes will be at least as impactful in commercial vehicles and logistics…
Amazon and Uber have already started to disrupt the parcel delivery market

Amazon Flex (Sept. 2015~)
- Allows same day delivery, available in 30+ US cities
- Costs Amazon $2-3 per package\(^1,3\)
- Amazon pays the driver hourly fees based on demand (no fixed cost)

Uber RUSH (Oct. 2015~)
- Same day delivery available in NYC, San Francisco and Chicago
- Cost to the sender can be as low as $5-7 per package\(^2,3\)
- Offers real time tracking
- Uber pays the driver 75-80% of the fee (no fixed cost)

Note: *Cost from an Amazon facility to the delivery location based on the $18-25 cost to deliver 7 to 15 packages per hour; 2) minimum charge for the first mile; 3) Average UPS Ground shipment cost per package in 2015 was $7.98; 4) guaranteed delivery time is by end of day next day for shipment within Manhattan based on UPS website

Sources: Uber, Amazon websites
Some segments of the local pick-up / delivery market, exposed to MaaS disruption, present significant growth opportunities

<table>
<thead>
<tr>
<th></th>
<th>B2B</th>
<th></th>
<th>B2C</th>
<th></th>
<th>P2P</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Express / Overnight</td>
<td>Multi-day</td>
<td>Express / Overnight</td>
<td>Multi-day</td>
<td>Express / Overnight</td>
<td>Multi-day</td>
</tr>
<tr>
<td>Parcel / Small Packages</td>
<td>Restocking during peak</td>
<td>Recurring inventory</td>
<td>Retail deliveries from</td>
<td>Retail deliveries</td>
<td>Birthday gift deliveries</td>
<td>Birthday gift deliveries</td>
</tr>
<tr>
<td></td>
<td>demand</td>
<td>shipments</td>
<td>local shops</td>
<td>from local shops</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Perishables</td>
<td>Scheduled restaurant</td>
<td>Grocery and flower</td>
<td>Baked goods from</td>
<td>Flowers delivered</td>
<td></td>
<td>Baked goods</td>
</tr>
<tr>
<td></td>
<td>food shipments</td>
<td>deliveries</td>
<td>retailers</td>
<td>to family members</td>
<td></td>
<td>delivered to friends</td>
</tr>
<tr>
<td>Fragile Packages</td>
<td>Fragile inventory</td>
<td>Pottery, glassware,</td>
<td>Pottery, glassware, etc.</td>
<td>Fragile personal</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>restocking</td>
<td>etc.</td>
<td></td>
<td>items</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sensitive Materials</td>
<td>Inter-firm legal</td>
<td>Court documents</td>
<td>Court documents</td>
<td>Intra-firm legal</td>
<td>Intra-firm legal</td>
<td></td>
</tr>
<tr>
<td></td>
<td>documents</td>
<td></td>
<td></td>
<td>documents</td>
<td>documents</td>
<td></td>
</tr>
<tr>
<td>Large / Heavy Packages</td>
<td>Impromptu inventory</td>
<td>Recurring large</td>
<td>Furniture deliveries</td>
<td>Personal Furniture</td>
<td>Personal Furniture</td>
<td></td>
</tr>
<tr>
<td></td>
<td>restocking</td>
<td>inventory shipments</td>
<td></td>
<td>shipment</td>
<td>shipment</td>
<td></td>
</tr>
</tbody>
</table>

High Growth Area
What could this mean? The UK may be informative:

Annual PDT per Capita by Mission by Year (km)(a)

- School / Religion: 11,135 to 10,439, -6%
- Transport Someone: 2,188 to 1,922, -12%
- Shopping / Errands: 3,276 to 3,217, -2%
- Work: 4,363 to 4,072, -7%
- Social: 975 to 886, -10%

Annual PDT per Capita by Shopping/Errands by Year (km)(a)

- Other non-escort: 2,188 to 1,922, -12%
- Personal business medical: 148 to 484, -72%
- Food shopping: 484 to 553, +15%
- Personal business other: 538 to 538, +0%
- Non food shopping: 1,922 to 1,506, -21%

(a) Annual PDT per Capita by Mission by Year (km) and Annual PDT per Capita by Shopping/Errands by Year (km) for the years 2008 and 2014.
Deep Learning development will be critical to this future to enable vehicles to handle complex situations

- A neural network is organized into layers, with each layer using the layer directly upstream as inputs
- Information is fed into the input layer
- Artificial neurons (nodes) within several “hidden layers” trigger when a certain characteristic within the input data is identified
- Nodes identify a characteristic by comparing a weighted total of identified upstream characteristics to a threshold value
- While upstream nodes identify basic characteristics, such as a gradient in a picture, downstream nodes are able to identify more complex objects, such as an eye
- Training the network involves adjusting the input weights between nodes so that it gives the desired response when presented with particular inputs

Deep neural networks allows computers to handle traditionally difficult tasks such as identifying animals, people, and objects in a picture, despite them having no set shape, color, etc.
With Deep Learning, miles are like gold

| Mission Complexity |
|---------------------|------------------|
| Possibly multiple destinations unknown prior to trip, changing routes, changing way points with unpredictable objectives |
| Destinations unknown prior to trip, predictable routes, fixed objectives |
| Predetermined destinations, routes, and objectives |

<table>
<thead>
<tr>
<th>Environmental Complexity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Controlled surroundings</td>
</tr>
<tr>
<td>Generally rule obeying surroundings</td>
</tr>
<tr>
<td>Unpredictable surroundings</td>
</tr>
</tbody>
</table>

| Pooling MaaS (mobility-as-a-service) in Mapped City |
| Racing in a racetrack |
| Multi-mission driving in Mumbai |
| Singapore taxis along fixed routes |
| Driving in high resolution mapped cities |
| Policing in Unmapped City |
| Driving on a test track |
| Driving along well marked highway |
| Construction Vehicle Operating On-site |

The emergence of autonomous vehicles is placing more emphasis on the ‘nervous system’ consisting of sensors, CPU, and software.
Deep Learning summary

From man to machine, driving is rapidly changing.

Vehicle operation and ownership is changing.

Mobility services will be a major new market and therefore a critical battleground.

Most car companies won’t simply be automakers anymore.

Investment focus is changing.

Miles are like gold!
Deep Learning summary

Power of the fleet will eclipse the importance of the individual car.

Highly secure, fleet-wide software architectures will be a new basis of competition.

Ideation and innovation will change.

Talent is the new arms race.

The nervous system will become the center of the vehicle design.
Key questions/ideas:

How can we most sustainably support the massive increase coming in PMT/VMT?

If a car “can’t” crash what will it look like?

The economics of electric vehicles dramatically change with a low speed “autonomous taxi bot” for urban areas. What technologies could make the promise real?

Mission specific vehicles could unlock significant societal value. How can you support and exploit this idea?
Deep learning enabled
cars only