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Data, through Analytics, to
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loT/Smart Manufacturing

Smart Manufacturing Technologies --the systems for
and around Smart Manufacturing.
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Digital cloud Internet of
technology computing | Things

Artificial Big Data
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Smart Manufacturing

Algorithms

Value
Chain

Smart Manufacturing is a highly connected, knowledge-enabled

Industrial enterprise where all business and operating actions are
connected (optimized) to achieve substantially enhanced

productivity, energy / sustainability, and economic performance.



The traditional Factory
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...affecting the lifecycle
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Factory Hierarchy
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ERP
(Enterprise Resource
Planning)

MES
(Manufacturing
Execution System)

LEWEL 4: Establishingthe basic
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matenial use, deliveny and shipping.
Determining invertany levels.
Tirme frarme: honths, weeks, days
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LEWEL 3:'Wiark flow, recipe
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hgirtaining records and
optimizing the production
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hiours, minutes, seconds
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158 9508 standard
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Response time and hierarchical level
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\ )
MES
Execution (Manufacturing
Level Execution System)
g _J
SCADA
. (Supervisory Control
Supervisory and Data Acquisition)
Level
DCS
(Distributed
trol t
Control Control System)

Level PLC

(Programmable

Logic Controller)

ms seconds hours days weeks month vyears



Complexity and Hierarchical level

Complexity

MES

Supervision

Group Control

Reaction Speed

months

days

minutes

seconds

Individual Control

0.1s

Field

0.1s

Site

Enterprise
Applications

Supervision

« Resource planning

¢ Maintenance
Cyclic
Condition-based

« Planning & Forecasting

e SCADA
Alarm management (EEMU 191)
Real-Time Databases

« Domain Specific Applications
EMS/DMS

» Outage management

e GIS connections

) « HART
Device Access + MMS
e OPC
« Time Synchronization
. PPS, GPS, SNTP, PTP, etc.

Field Buses + Traditional - Modbus, CAN, etc.
+ Ethernet-based - HSR, WhiteRabbit, etc.
« PLC

PLCs/IEDs « SoftPLC
« PID

Instrumentation
Sensors/Actuators 4-20 mA loop

Sensors accuracy
Examples (CT/VT, water, gas, etc.)

/

Physical Plant

* Plant examples
* Why supervision/control?

Reliability and Dependability
e Calculation
e Architectures
* Protocols



Manufacturing Operation System Levels*

Level 4

Business Planning

& Logistics
Plant Production Scheduling,
Operational Management, etc

ANSI/ISA 95 standard classification

4 - Establishing the basic plant schedule -
production, material use, delivery, and shipping.
Determining inventory levels.

Time Frame
Months, weeks, days
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Level 3

Manufacturing

Operations Management
Dispatching Production, Detailed Production
Scheduling, Reliability Assurance, ...

3 - Work flow [ recipe control to produce the desired
end products. Maintaining records and
optimizing the production process.

Time Frame
Days, shifts, hours, minutes, seconds

J
o o -“_ —_—o o )
Level 2 w v 4;’ 2 - Monitoring, supervisory control and automated
control of the production process
Time Frame
Batch Fontiriusis B T— Hours, minutes, seconds, subseconds )
Control Control Control
Level 1 1 - Sensing the production process, manipulating
the production process 5

p.17
*Levels are references to ISA-95, "Enterprise-Control System Integration”



Data in Context

Data is needed to design and operate modern factories. But
data is only valuable if :

e [t Is accurate
e |t is accessible

e ltis relevant
e We know what to do with it

Modern information technology provides the first two.
Manufacturing experts provide the second two.



Data in Context

Manufacturing experts know the processes and
machines.

With context knowledge, manufacturing experts
have the intuition to help explain data, to identify
the question to ask, and to help to develop models
to explain, provide context to, data.



Framework

Acquisition, Use, and storage Analytics, Modelling, Learn from the Data —
of Contextualized Data Simulation Information and Knowledge



Why Smart/loT now?

 What Has Not Changed

* Process Physics
e Transformation Methods and Energy Sources
e Random Effects
e Equipment Capability
e Control Authority
* Need for Appropriate Process Models
e Global Modeling (Simulation)
Local Modeling
Control Modeling for Feedback Stability and Performance

Local Small Variation Causal Models
Models of Process Randomness



Why Smart/loT

* What Has Changed?

e Cost and Ubiquity of Sensing

e Communication and Data Processing

e Rise of “Universal” Models (Big data/deep learning)
e Standards for Data and Communications



Manufacturing Trends

The Smart Factory
The Smart Lifecycle

Smart Examples



examples of how the Internet of “Things".embedded with
electronics, software, sensors and connectivity enable
greater value and service...




Data
ntegration

King's gawaiian, a family-owned and
operated bakery, supports a centralized data-
collection system that collects vast amounts of
data - about everything from oven
temperatures and bake times to scale weights
and maintenance operations to ensure
anticipated and reliable outcomes.




Troubleshooting

Toyota uses real-time software for error corrections in
the plant. With improved troubleshooting capabilities
and error correction, Toyota has minimized rework and
scrap rates in its Alabama plant, which has resulted in
an annual cost saving of $550,000.



Floor Visibility

GM uses sensor data to decide if it's too humid to
paint an automobile. If the system defines the
conditions are unfavorable, the automobile will be

routed to another area of the manufacturing process,
reducing repainting and maximizing plant uptime.




Decision

GE mobile-enabled SCADA applications enable
mobility to display performance data and status

updates on handhelds, traditionally only available
from processor-intensive analytical tools, thereby
enabling faster decisions.
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; Proactive Maintenance

Harley-Davidson’s has an installed software to

monitor and track performance of equipment, such
as the speed of fans in the painting booth. The
software = automatically detects issues if a
measurement, such as fan speed, temperature, or
humidity has deviated from acceptable ranges and
adjusts itself.




. analysis and reporting portal for a detailed view into

Process Automation

Country Maid, leading manufacturer of branded
pastries & cookies uses a Process Automation System o
with Production Intelligence that enables scalable,
plant wide process control system with visualization,

production trends.



THE FACTORY FLOOR
and SUPPLY CHAIN
AS A DAIA
PLATFORM

Informatics, telematics, predictive
analytics... huge opportunities for
disruption
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Smart Medicine

Opportunity is the same, but system is different...



Medical is Different — opportunity is the
same. But:

* Harder to standardize communication, data acquisition protocols,
data storage.

e Data is harder to acquire.
 Harder to quantify success
* Focus on the sensors and local systems.



Medical Electronic Device Realization Center

Solving clinical needs, Physiological
by innovating user- Data
centric manufacturable
devices, leveraging the
pqwer of the . Integrated
microelectronics Sensing
Industry and Boston / System
Cambridge Ecosystem.

Data Analytics

Decision
Support /
Actionable
Information

Patient Health Care

MEDRC Actions




MEDRC - Model

MEDRC at MIT does Medical
Electronic Device Research with /
strong interaction between

companies and

physicians/clinicians. Challenges, Perspectives

MIT
for Context MEDRC

Companies

 Jointly created by industry, academics, and

clinicians =» maximizes chance of project
SUcCcCess. Hospitals, Physicians

e prototypes placed in “customers” (clinicians) K
hands in parallel with research technology

development.

Medical Electronic Device Realization Center (MEDRC) © 2016 B.W. Anthony, MIT



Application Areas and Technology Examples

 Wearable Devices
— Vital signs monitors including cuffless blood pressure

 Minimally Invasive Monitors
— EEG measurements for Epilepsy patients

e “Point of Care” Instruments

— “Lab on a Chip” for blood, urine, saliva analysis
* |Imaging

— Smart Ultrasound

« Data Communication
— Body Area Network

e Pharma
— Clinical trial of the future

Medical Electronic Device Realization Center (MEDRC)




Long-Term, Subdermal Implantable EEG Recorder and
Seizure Detector

« 8 EEG Channels

e 35cmx3.5cmX5mm
(electronics package)

« Wireless data transmission and
battery recharging

» External device (not shown) for
power and data transmission

: Configurable
electrode
arrays

LELLTTTE] !“! H RO PUERBR YR BRI RS NIRRT
. e =

Electronics
package with
storage,

" battery,
",\;-. wireless

5mm

‘ Belzure i
h8 De’tectldn‘ R

MEDRC

MEDICAL ELECTROMIC DEVICE
REALIZATIONM CENMTER With Bruno Do Valle, Jason Yang, and Charlie Sodini

MIT Microsystems Technology Laboratories © 20 16 B W Anth (0] ny, M IT
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Ultrasound System Flow
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Ultrasound System Flow

Contact
State




Ultrasound System Flow
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Enhanced Ultrasound Probes

Human-in-the-loop
Position and
Orientation
Control

" [Automatic

Force
Control




Human Robot Cooperation — Freehand 6-DOF
Ultrasound Probe Tracking (via Skin Mapping

ehand 3D Ultrasound

‘. F
! camera

| camera

...... T wenees
ol [ 1D array
| - transducer
—n
- - C
2D scan plane l

puter-Guided Ultrasound Realignment

Shih-Yu Sun, Matthew W. Gilbertson, and Brian
W. Anthony, Probe Localization for Freehand 3D
Ultrasound by Tracking Skin Features, IEEE

M E D R C Transaction on Medical Imaging , 2013.
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Takeaways

e Standards are enabling
* Lots of useless data is easy to acquire

e Context - Even simple models (physics, physiological, ) are
powerful tools for guiding data acquisition strategies and
analysis

* Physics Driven vs Data Driven

e Data + high computational power + domain knowledge =
success

* |dentify the sysem scale at which impact can be had.
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