9/27/2018

Modeling and Characterization of Fracture Roughness and its Impact on Heat and Mass Transport Processes

CARLA CO, RITA OKOROAFOR AND ROLAND N. HORNE

September 27, 2018

Stanford University

2

(Sean Porse, also Chad Augustine)

RESERVOIR CREATION

FRACTURE MANAGEMENT

Command and Control

Stanford School of Earth, ENERGY

3

4

- 0. What kind of fractures do we want?
- 1. How do we create the fractures we want?
- 2. How do we determine what kind of fractures we've created?

Stanford SCHOOL OF EARTH, ENERGY

Rough Fractures

School of Earth, Energy & Environmental Sciences

Fractures in Geothermal Reservoirs

- Renewable energy resource
- Faults/fractures are the main flow conduits
- Accurate flow models → production
- Flow channeling
 - > Flow area
 - > Heat conduction surface area

From Lawrence Livermore National Laboratory (2012)

5

6

Stanford SCHOOL OF EARTH, ENERGY

Overall Issue

How important is the fracture roughness? How does it affect mass and thermal energy transport?

School of Earth, Energy & Environmental Sciences

Channeling Flow in Natural Granite Fractures

Stanford | SCHOOL OF EARTH, ENERGY

From Ishibashi et al. (2012)

7

8

Stanford SCHOOL OF EARTH, ENERGY

From Abelin et al. (1990)

Overall Research Problem

- How are rough fractures created with stress?
- Boundary element method (DDM)

Fracture Characterization

- · How can we describe the spatial distribution?

Fracture Flow

- What is the impact of roughness on flow?
- How can we predict flow behavior?
- Local cubic law, Sequential Gaussian simulation

Stanford SCHOOL OF EARTH, ENERGY

Stanford SCHOOL OF EARTH, ENERGY

Motivation: Fracture Generation w/ Stress

School of Earth, ENERGY & ENVIRONMENTAL SCIENCES

From Strickfaden (2009)

- Ritz et al. (2012)
- Discretize only on the fracture
- Models element stress interactions within the fracture trace
- Relate $[D_n, D_s]$ to $[\sigma_{nn}, \sigma_{ns}]$ using influence coefficients
- Integrated Complementarity algorithm \rightarrow Eliminate interpenetration of cracks
 - D_n : normal displacement (opening) D_s : shear displacement (slip) σ_{nn} : normal stress σ_{ns} : shear stress

6 Shear Displ

From Lee and Cho (2002)

- σ_=2MPa σ_=3MPa

11

12

Stanford SCHOOL OF EARTH, ENERGY

Modified from Ritz et al. (2012)

School of Earth, Energy & Environmental Sciences

Overall Procedure after Preprocessing

Stanford School of Earth, Energy

Stanford SCHOOL OF EARTH, ENERGY

School of Earth, Energy & Environmental sciences

Defining the Representative Fracture Slip

- Surface roughness → heterogeneous fracture slip distribution
- Difficult to define a single fracture slip value
- Use mean slip as a representative slip value

Results Summary: Permeability vs. Slip

Stanford School of Earth, ENERGY

22

Granite vs. Sandstone DDM Results

- Main difference in input:
 - > Elastic properties
 - Initial surface
- Similar Results:
 - Consistent permeability vs. normal and shear stress trends
 - Higher permeability in the perpendicular direction with respect to the shear stress
- Sandstone sample:
 - > Higher permeability values
 - > Smoother aperture texture

School of Earth, Energy & Environmental sciences

Sandstone Sample

23

Conclusions: Fracture Generation with DDM

- DDM is a consistent physical model for generating rough fractures
- Surface roughness has a significant impact on the aperture and slip
- Permeability increases with σ_{ns}^r and decreases with σ_{nn}^r

$\sigma^r_{ns}=6MPa$	$\sigma_{nn}^{*} = -1MPa$	$\sigma_{aa}^{r}=-6MPa$	$\sigma_{nn}^r = -10 MPa$	o'm = -1	IMPa σ_{nn}^r	-6MPa	$\sigma_{nn}^r = -10MPa$
$\sigma^r_{us}=8MPa$				$\sigma_{uu}^{r} = SMPa$			
$\sigma_{\rm isi}^{\rm r}=10MPa$				σ [*] _m = 10MPa			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
$m_{ac} = 20 M P a$. = 20MPa			e (

Presentation Outline

	Fracture Generation with • Numerical model (DDM)	Stress	
13 meter 13 meter 14 met	Fracture Characterization Stress correlation Length + Stress correlation 	n (DDM fractures) (Laboratory fractures)	
Stanford School of Earth, ENERGY			25

Variogram: Introduction

- Two-point correlation
- Reflects the difference of the values of 2 points separated by a lag distance in a particular direction
- Main Parameters:
 - Range : correlation length
 - · Sill : variance
- Geometric Anisotropy
 - Different range
 - Spatial continuity

Stanford SCHOOL OF EARTH, ENERGY

Variogram Analysis of DDM Fractures

Stanford SCHOOL OF EARTH, ENERGY

29

30

Variogram Analysis of DDM Fractures

School of Earth, ENERGY & ENVIRONMENTAL SCIENCES

Variogram Analysis of DDM Fractures

Wedge Fracture Surfaces (Ishibashi et al., 2015)

- Fracture surfaces are generated using a wedge (Granite samples)
- 3 different length scales
- 2 surface pairing configurations: different spatial characteristics

Variogram Analysis of Wedge Fractures

- Mated fractures:
 - Isotropic
 - · No preferential direction
- Sheared fractures:
 - · High spatial continuity in the perpendicular direction
 - · Channels perpendicular to the shear offset direction

Stanford SCHOOL OF EARTH, ENERGY

32

40 e (m

Conclusions: Fracture Characterization

- Variogram models capture spatial trends in the aperture distribution
- Variogram range:
 - · higher perpendicular to the shear stress
 - increases with shear stress
 - decreases with normal stress
- Range anisotropy:
 - independent of stress
 - · dependent on rock type
 - · reflects the surface pairing configuration (mated vs. sheared)

Stanford SCHOOL OF EARTH, ENERGY

Main Conclusions

FRACTURE GENERATION WITH STRESS

- Roughness leads to heterogeneous aperture and slip distributions
- Higher permeability perpendicular to the shear stress direction

FRACTURE CHARACTERIZATION

- Greater spatial continuity perpendicular to the shear stress
- Variogram parameters are related to the generation mechanism

33

Stanford | SCHOOL OF EARTH, ENERGY & ENVIRONMENTAL SCIENCES

- 0. What kind of fractures do we want?
- 1. How do we create the fractures we want?
- 2. How do we determine what kind of fractures we've created?

Modeling and Characterization of Fracture Roughness and its Impact on Heat and Mass Transport Processes

CARLA CO, RITA OKOROAFOR AND ROLAND N. HORNE

