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RESERVOIR CREATION

FRACTURE MANAGEMENT
A Command and Control
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1.How do we create the fractures we want?

2.How do we determine what kind of fractures
webdbve created?
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Rough Fractures
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Fractures in Geothermal Reservoirs

A Renewable energy resource

A Faults/fractures are the main flow
conduits

A Accurate flow models A production
A Flow channeling

U Flow area

U Heat conduction surface area

From Lawrence Livermore National Laboratory (2012)
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Overall Issue

How important is the fracture roughness?
How does it affect mass and thermal energy transport?
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Channeling Flow in Natural Granite Fractures
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Heterogeneous Tracer Flow within a Fracture
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Overall Research Problem

Fracture Generation

A How are rough fractures created with stress?
A Boundary element method (DDM)

Fracture Characterization

A How can we describe the spatial distribution?
A variogram

Fracture Flow

"% A What is the impact of roughness on flow?
A How can we predict flow behavior?
A Local cubic law, Sequential Gaussian simulation
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Presentation Outline

: Fracture Generation with Stress
; =En A Numerical model (DDM)

Fracture Characterization

| A Stress correlation (DDM fractures)
| A Length + Stress correlation (Laboratory fractures)
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Motivation: Fracture Generation w/ Stress

A Fracture aperture/permeability
evolution with stress application

A Need to develop a consistent,
physical model

A Boundary element method (DDM)

A Initial fracture surfaces generated
from laboratory compression tests

U Granite sample

; %
U Sandstone sample 2
B

g 10
&
g

E 107
SCHOOL OF EARTH, ENERGY From Strickfaden (2009)

Stanford | = ENVIRONMENTAL SCIENCES

107

<

=@ = a=1MPa

v ¥ ‘== 0 =2WPa

v -0 =3MPa

3 8 10 12 14
Shear Displacement (mm)

From Lee and Cho (2002)

Displacement Discontinuity Boundary Element
Method (DDM) Model: Introduction

A Ritz et al. (2012)

A Discretize only on the fracture

A Models element stress interactions
within the fracture trace

A Relate ORO to[, h, ]using
influence coefficients

A Integrated Complementarity
algorithm A Eliminate
interpenetration of cracks

‘O : normal displacement (opening)

‘O : shear displacement (slip)
: normal stress
: shear stress
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Modified from Ritz et al. (2012)
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DDM Input Data

Fracture Surface Elevation Fracture Trace

Y (mm)

Elevation {mm)
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Overall Procedure after Preprocessing

’ Whole Fracture Plane ‘ ’ Rectangular Section ‘

Get
. Rectangle
Filtered Aperture Aperture Relevant
Elevation p P Flow
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DDM Run Configurations: ,, and Flow Orientation

| Flow |
Perpendicular Parallel

itudinal

Lon

ay

Lateral
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Flow Results:,, Effect

Increasing ,,
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Flow Flow
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A Higher, A increases resistance to slip, less elements open
A Most restrictive case emphasizes dominant flow paths
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Flow Results:, Effect

Increasing ,,
o
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Flow Flow
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A Higher,, A more elements slip and open
A Most restrictive case emphasizes dominant flow paths

0.1
Nomalized flow rate
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Flow Results: Flow Orientation Effect

Perpendicular
Flow

n

Parallel
Flow

A Higher flow perpendicular to ,,

A Perpendicular: channelized flow pattern
A Parallel: distributed flow pattern

A Flow patterns A heat transfer efficiency
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Results Summary: Permeability vs. Stress

Longitudinal ,,

Increasing ,,
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Defining the Representative Fracture Slip

Fracture Slip Map Fracture Slip Distribution

siip (10™*m)

A Surface roughness A heterogeneous fracture slip distribution
A Difficult to define a single fracture slip value
A Use mean slip as a representative slip value
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Results Summary: Slip vs. Stress

Longitudinal ,,
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ASame trend as permeability vs. stress
ASmall slip at critical, (" , )
AvVariability in slip values
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Results Summary: Permeability vs. Slip
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Granite vs. Sandstone DDM Results

< I o Granite Sample
A Main difference in input: = .

U Elastic properties
U Initial surface
A Similar Results:

U Consistent permeability vs.
normal and shear stress
trends

U Higher permeability in the
perpendicular direction with
respect to the shear stress

A Sandstone sample:
U Higher permeability values
U Smoother aperture texture

, ‘Sandstone S
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Conclusions: Fracture Generation with DDM

DDM is a consistent physical model for generating rough fractures
Surface roughness has a significant impact on the aperture and slip
Permeability increases with ,,  and decreases with ,,

Permeability is higher in the flow direction perpendicular to ,,
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