Free Piston Stirling Engine Based 1kW Generator

Year 1 Program Review Dec 14-15, 2016

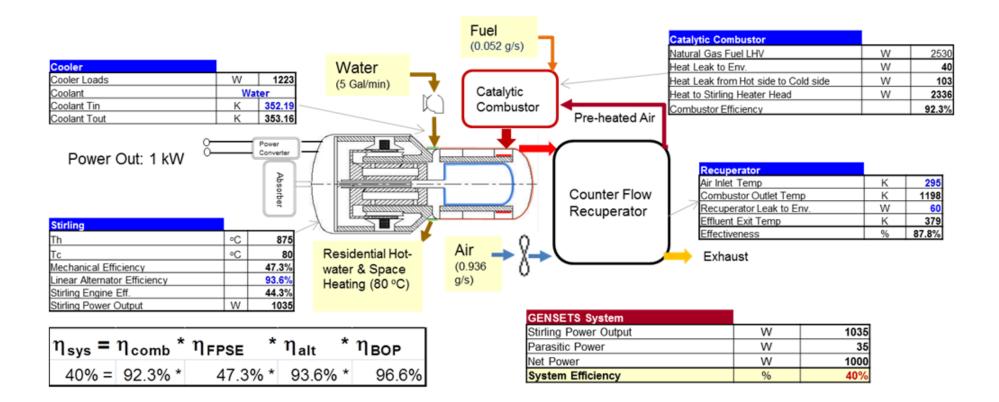
Sunpower, Aerojet Rocketdyne, Precision Combustion Incorporated PI: Gary Wood, Sunpower Technical Leader

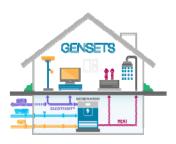
Project Team

- Sunpower, Inc. (SP)
 - Team lead, FPSE lead, controls lead, prototype system integrator
 - Free Piston Stirling machine design, prototype, and low-volume production expertise
 - Free Piston Stirling controls design and prototype expertise
 - Prototype system and FPSE/combustor integration experience
 - Successful licensing of technology and technology transfer
- Precision Combustion, Inc. (PCI)
 - Combustor lead
 - Combustor and recuperator design and prototype development expertise
 - Combustor/FPSE integration experience
- Aerojet Rocketdyne (AR)
 - High temperature materials lead
 - Expertise in High Temperature (HT) materials selection, and testing
 - Expertise in HT materials processing, joining, and fabrication
 - Potential HT materials manufacturing capability

Technology

Objective – Deliver for 3rd party testing prototype GENSETS system meeting program performance and emissions requirements

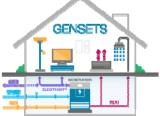

Key system components


- Free piston Stirling engine
 - High heater head temperature and high efficiency linear alternator enable high efficiency target (~45%)
 - High temperature material heater head and displacer assemblies and hot cylinder
 - Advanced, compact design
- Recuperative burner
 - Novel, porous media heat acceptor serves as flame holder and fuel/air mixer
 - Highly recuperated burner (target efficiency of ~94%)
- Controls
 - Engine controller based on existing SP IP and designs
 - Burner and BOP controls to be developed based on previous program experience

Technology

Technical Progress (HT Materials)

- Two POC test articles were fabricated to demonstrating the ability to join to the metal foam and addressing diffusion concerns
- Two subscale burner test bar assemblies joined and delivered
- Full scale burner
 - Two full-scale test bars joined and delivered
 - One set of recuperator components were fabricated and delivered
- A PCA was developed, based on the prototype full-scale deliverables. High temperature components exceeded desired cost, but PCA can be used as a starting point for a DFM study



Technical Progress (Burner)

- POC and Sub-scale Burner
 - Completed proof of concept testing of combustor concept
 - Sub-scale burner setup and tested
 - Exceeded required heat flux into acceptor to meet full scale requirements
 - · Met required thermal input into Stirling acceptor
 - Demonstrated stable and complete combustion at target temperature
 - Achieved uniform temperature distribution in acceptor
- Full Scale Burner
 - Design for full scale combustor completed
 - Fabrication of burner components nearly complete
 - Next Step: Start burner assembly in mid December



Technical Progress (FPSE)

- Prototype FPSE
 - Prototype engine completed and assembled with an electric heat test head
 - First run of the engine occurred on Nov 16
 - Current maximum power achieved is 750W at a reduced heater head and reject temperatures
 - Testing is underway to work up to the design point
- Design
 - Completion of operating frequency, sizing and other trade studies
 - Completion of design review

Challenges And Lessons Learned

Novel burner design

- Concerns suitability of porous media as acceptor, joining to heater head, joint integrity, heat transfer, temperature uniformity, auto-ignition, burner efficiency
- Mitigation
 - POC burner sample demonstrated fuel/air mixing and stable operation
 - Subscale burner demonstrated: fuel combustion with no auto-ignition, joining integrity, heat transfer and temperature uniformity
 - Subscale and full-scale burners used to study performance and efficiency tweaks
 - Full-scale burner will be used to demonstrate target performance and metrics
- High temperature material development and availability
 - Concerns
 - High temperature materials lead time is prohibitive
 - Joining method and bond integrity is uncertain
 - Mitigation
 - All high temperature materials for prototypes were prioritized in order to minimize schedule effect
 - Seeking alternate materials and vendors as backup plans for future efforts
 - Diffusion sample demonstrated joining capability and joint integrity

Challenges And Lessons Learned

Meeting project cost targets

- Concerns
 - High temperature components' PCA indicate they are cost-prohibitive
 - Burner and BOP components costs remain to be finalized
- Mitigation
 - Engine components can be produced economically in volume
 - Design trades have been made to reduce engine cost and system complexity
 - Material trades and design options continue to be considered as part of DFM
 - Volume pricing information is included and refined in TEA

Technology to Market considerations

- Concerns
 - Team reach/understanding into the US CHP market is limited
 - Team has limited experience with Technology to Market efforts
- Mitigation
 - Significant effort put into market analysis and identifying alternate markets
 - Efforts turning to next stage funding and early adoption markets
 - Considering bringing in external expertise

Meeting program performance targets with prototype system

Next Steps (2017 Milestones)

Task/Deliverable	Completion
High temperature material deliveries for Beta burner and FPSE	Feb
Programmatic plan submission/revision (T2M, TEA, NSFP, etc.)	Feb
Alpha burner delivery	Mar
FPSE characterization testing (electrically heated)	Apr
Controller design and fabrication	Мау
Beta burner delivery	Jul
Engine/controller integration	Jul
Engine burner integration	Sep
FPSE characterization testing (burner heated)	Nov
Burner and BOP controller integration	Dec

