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Performance Targets and Validation Plan 

• Integration of microcontroller with physics-based control models onto 

a large format cell and to demonstrate 

–  i)  a 20% reduction in the weight of the cell 

–  ii) a 50% reduction in the charging time for the cell without compromising the 

number of cycles  

• 3 cells will be subject to cycling with no heat control in a chamber held 

at -17, 0 and 30°C for 3 test plans. Life of cells tested in case (B) will be 

better than (A), and ideally closer to base conditions (Test-0) 

–  Test 0:  30% to 85% SOC window 

–  Test A: 0% to 100% SOC window 

–  Test B: 0% to 100% SOC window with MPC based charging control 
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Cost / Benefit – Battery downsizing 

Useable 

Capacity 

Today’s 

Total 

Capacity 

Total 

Capacity w/ 

AMPED 

model 

Per vehicle 

battery cost 

savings 

Per vehicle 

Additional 

BMS HW 

cost 

Per vehicle 

development  

cost savings 

1 kWh 1.7 kWh 1.11 kWh $111 $35 -$1.67 

4 kWh 6.7 kWh 4.44 kWh $458 $35 -$1.67 

6 kWh 10.0 kWh 6.67 kWh $690 $35 -$1.67 

10 kWh 16.7 kWh 11.1 kWh $1,152 $35 -$1.67 

20 kWh 33.3 kWh 22.2 kWh $2,310 $35 -$1.67 

• Assumptions 
– 10 kWh useable system 

– Costs escalate at 2% per year 

– Discount rate of 5% per year is applied 

– 10,000 vehicles produced per year 

• Outcome 
– Present value of potential savings is $47M for each vehicle model 
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Empirical  

Models 

Intercalation + Faraday’s law 

Electrochemical Engg. + Faraday’s law+ 

intercalation 

Typically solved offline.  

P2D +Stress-
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Plane shifts

Li+
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Stress effects on 
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balance Model Reformulation 

Reduces Computational Time 

• Adding more physics provides more fidelity 

and functionality for the model and the BMS 

• Comes at increased computational cost 
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Mathematical Reformulation 
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(P.W.C. Northrop+, JES, 2011) (Patent US20140136169) 
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Which charging protocol is better? 

 

 

 

 

 

 

• Protocol 1 reaches 4.2 V first and stays there 

• Protocol 2 reaches 4.2 V at a later time but goes well above 

4.2 V 
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• Negative potential at the anode 

causes lithium to plate 

– Anode overpotential < 0 

Lithium plating 

x 

r 

(www.ifw-dresden.de/de) 
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Optimal control for charging – avoid plating 

• Problem formulation 

 

 

 

 

• Model description 

– Reformulated model 

 
 

 

   

( )
( )

f

Q app
app

t

i t
0

max i t dt    

 

such that

maxapplied

plating

0 i i ;

>0

 



 
 
 
 

3.5C

1

,s pC 2

,s pC

1

,e pC
2

,e pC
1

,e sC

2

,e sC

1

,s nC 2

,s nC

1

,e nC 2

,e nC
1

,e pT

2

,e nT1

,e nT

2

,e pT

2

,e sT

1

,e sT

Maximize charge stored 

(Patent US20140136169, “Systems and methods for improving 

battery performance;” P.W. C. Northrop+, JES, 2014) 
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Which charging protocol is better? 

 

 

 

 

 

 

• Protocol 1 reaches 4.2 V first and 

stays there 

• Protocol 2 reaches 4.2 V at a later 

time but goes well above 4.2 V 

• Protocol 2 avoids lithium plating 

(optimal control) 
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Is avoiding plating enough? 
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Determining optimal charge profile 

Optimal fast charge yields 10.5% increase in SOC 

with no lithium plating or effects from temperature rise 

(B. Suthar+, ECS meeting, Orlando, 2014) 
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User Interface 
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Model Vs Data (Case 0) 

• Capacity check between 4.2 and 2.5 V 

• 0.1C to 3C rate discharge 

Cycled Cells Fresh Cells 
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Life prediction (all scenarios) 
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Extending Operational Window 

• During 2C charge/5C discharge at 0 deg. C, the cell capacity drops 

to less than target usable capacity within 500 cycles. 

• MPC will enable longer cycle life. 
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Publications and Codes 

• Lawder, M., et al. “Model-Based SEI Layer Growth and Capacity 

Fade Analysis for EV and PHEV Batteries and Drive Cycles” J. 

Electrochem. Soc., 161(14), A2099-A2108 (2014) 

 

• Northrop, P.W.C., et al. “Efficient Simulation and Reformulation of 

Lithium-Ion Battery Models for enabling Electric Transportation” J. 

Electrochem. Soc., 161(8), E3149-E3157 (2013) 

 

• Suthar, B., et al. “Optimal Charging Profiles with Minimal 

Intercalation-Induced Stresses for Lithium-Ion Batteries Using 

Reformulated Pseudo 2-Dimensional Models” J. Electrochem. 

Soc., 161(11), F3144-F3155 (2014) 

 

• Code for optimally charging batteries and GUI for battery 

optimization are available at www.depts.washington.edu/maple 


