

META-COOLING TEXTILE

Performance Team

YuHuang Wang (PI) Min Ouyang (Chemistry) (Physics)

Bao Yang (Mech. Eng.)

Bing Hu (MSE)

10: 10

YuHuang Wang (PI)nanotechnology & materials chemistry Min Ouyang- meta physics and modeling Bao Yang – thermal management Liangbing Hu- textile processing UNIVERSITY OF MARYLAND

Min Li Postdoctoral lead Senior Scientist and Innovation Lead, Milliken & Company Edmir Silva Corporate Product Development Unifi Manufacturing, Inc.

Duration of Award: May 1, 2015-April 30, 2018

liken.

META COOLING TEXTILE WITH SYNERGETIC INFRARED RADIATION AND AIR CONVECTION FOR BIDIRECTIONAL THERMOREGULATION

Technology Summary

- Active infrared properties control in clothing, for the first time, through innovative meta-fiber technology.
- Self-powered autonomous regulation of clothing for thermal comfort.
- Maximize the efficiency of localized cooling/warming through synergetic actions of all 4 major mechanisms.

Value Proposition

- A unique new function for clothing to help penetrate the >\$600B global industry of apparel.
- Potential to reduce energy cost of buildings that can total 2% of all energy used in the United States.

Uniqueness Claim

Metric	State of the Art (air conditioned clothes)	Proposed
Added Thermoregulation Capacity	N/A	41 W
Self-regulation	No	Yes
Power Consumption	2.5 -5 W	0
Weight Increase	> 10%	2.5%
Cost Increase per T-shirt	~ \$100	\$0.88 - 3.42

- MCT integrates nanostructures with ideal thermal band and responsive inter-coupling to effectively manage thermal comfort by synergetic control over infrared radiation and the other heat exchange channels.
- When hot, the yarns shrinks, the nanostructures interact to maximize emission, the body cools effectively. When cold, the reverse effects occur.

Efficient LTMS with bidirectional thermoregulation at a fraction of cost.

Patents pending

MCT vs. State-of-the-Art Wearable LTMS

- Cooling vests (including evaporative cooling)
- Sweat wicking (e.g. Nike Sphere React and AeroReact)
- Air-conditioned jackets
- Disadvantages (air-conditioned jackets specifically):
 - Bulky (require 2 fans, control box, cable, and 4 AA batteries every 5 hours)
 - Costly (\$140 or more per system)
 - One direction regulation/lack
 of infrared control

Nike AeroReact (Oct. 2015)

Kuchofuku Air-Conditioned Cooling Coat

MCT harnesses infrared radiation synergistically with the other channels

- Principle:
 - Adjustable infrared properties with synergetic control over evaporation and air convection
- Strategy:
 - Meta coupling effect
 - Moisture/thermally responsive fibers
- Method:
 - Experimental and computational
- Targets:
 - Add 23 W (summer) + 18 W (Winter) thermoregulation capacity

Figure credit:

Dr. Ping Liu, DELTA: Delivering Efficient Local Thermal Amenities, Presented at Delivering Efficient Local Thermal Amenities. DELTA Kickoff Meeting, May 21-22, 2015, Portland, OR

Key Parameters of Performance and Where We Are

Baseline Clothing

Temperature Setpoint	Total Thermal Resistance (m ² F/W)				
Lower, 70 °F	0.40				
Upper, 75 °F	0.31				

Updated MCT metrics based on 5th generation thermal modeling (vs. proposed)

Temperature Setpoint	Radiation (m ² F/W)	Conduction (m ² F/W)		Convection (m ² F/W)		Moisture (m² F/W)	Total Thermal Resistance (m² F/W)			
Expanded Lower, 66 °F	1.86 (1.98)	0.02 (0.1)		0.16 (0.61)		3.25 (3.52)	0.46			
Expanded Upper, 79 °F	0.77 (0.65)	0.013 (0.032)		0.21 (0.41)		2.18 (2.36)	0.24			
Added Thermoregulation Capacity (W)	15.7 (20.9)		22.1 (17.3	1 3)		3.12 (2.8)				
Performance targe	et 🔄	Q7	Q8		Q9	Q10	Q11	Q12		
T equivalent Me	ta Fiber 0	.25 °C	±0.5°	± D	1 °C	± 1.5 ℃	±2 ⁰C			
	MCT -					± 0.5 °C	± 1 ⁰C	± 2 °		

Key Interim Learning and Results Theoretical Model

- Finite-difference timedomain modeling of infrared optical properties.
- properties.
 4-layer thermal model of clothing built with Ansys Fluent.
- Coupled convection, conduction, radiation, and evaporation (in office settings).

- FDTD optical modeling predicts tunable emissivity in the infrared by adjusting the fiber spacing.
- Numeric thermal model predicts that a setpoint expansion of ± 4 °F can be achieved by proposed MCT technology.

Key Interim Learning and Results **Dynamic Infrared Response**

- 1st MCT prototype demonstrates autonomously tunable infrared emissivity by more than 10%, adding ~1.2°F to thermoregulation capacity.
- Our data suggest, for the first time, that dynamic response in the infrared can be achieved through proposed MCT.

NCT yarn

Key Interim Learning and Results Infrared Measurement System

- Spectrally resolved, quantitative IR measurements of dynamic systems?
- Environmental chamber integrated FTIR system
- Transmittance + Reflection + Emission
 - MCT detector covering 1-22 μm or 1-16 μm with microscope
- Humidity and temperature controls
 - Temperature control with 0.1 °C accuracy
 - Humidity control over 5-95% with a stability of +/- 0.5%
- Newly installed motorized stage for mapping

- Theoretical optical and thermal modeling predicts a setpoint expansion of ± 4 °F can be achieved by proposed MCT technology.
- A proof-of-concept demonstration of proposed MCT has been established through the design of meta fibers and knitted fabric.
- First prototypical MCT fabric already shows dynamically tunable infrared properties by more than 10%, adding ~1.2 °F to the thermoregulation capacity.

The Road Ahead

- Our project is well on track to deliver a MCT prototype with robust dynamic control over infrared radiation and other main heat exchange channels to achieve bi-directional thermoregulation.
- Next steps are focused on performance optimization through designfabrication-characterization loops.

1. Markets/Applications/Technology

Finding first applications and first markets

2. Experts to connect

Knitting and yarn processing of (fragile) samples on smaller scales.

3. Suggestions/opportunities for MCT

Collaborations/Partnerships on product development/MCT technology applications

Questions? Comments? Suggestions? Please contact YuHuang Wang: yhw@umd.edu