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About the Control and Optimization for Renewables
and Energy Efficiency (CORE) Lab - Applications...

We are leveraging advanced control techniques to revolutionize energy harvesting and
efficiency in the air, underwater, and on the ground

Tethered wind and marine

hydrokinetic energy systems

e Airborne wind energy systems

* Tethered ocean current turbines
(energy-harvesting AUVs)
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What are airborne wind energy (AWE) systems?

Fundamental characteristics:

* Replace towers with tether(s) and lifting body
e Offer increased power through altitude variation, crosswind motion, or both
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Why airborne wind?

* 5-10x power density at high altitudes
* 90+ percent material reduction vs. towers
e Can adjust altitude and motion in real time to maximize power output

* Markets: Remote off-grid/microgrid (50.15-0.20/kWh LCOE vs. S0.50/kWh+ for diesel fuel)
and deep water offshore
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Critical challenges with AWE systems

* |Replacement of towers with tethers results in a coupled system L
| i Why co-design is important
‘design and flight control challenge |

_______________________________________________________________________________________________

* :Simulation tools alone are not adequate for design optimization Why legacy approaches

* Full-scale experimental validation is expensive are insufficient
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To address these challenges, we have created a lab-scale co-design platform
for AWE systems

Follow-on questions:

« How can we optimally fuse (relatively) expensive experiments with cheap
numerical simulations in optimizing a design?

* How can we leverage the ability to adjust control parameters during an
experiment in optimizing a design?



A Lab-Scale, Water Channel-Based Platform for
Closed-Loop AWE System Co-Design

2012-2013: Passive system in the University of ~ 2014-present (continually evolving) active system
Michigan 2ft x 2ft Aerospace Engineering Water  in the UNC-Charlotte (soon to be NC State) 1m x 1m Water
Channel - Channel:
* 3D printed (FDM) ~1/100-scale ABS plastic models ~ * 3D printed (SLA) ~1/100-scale photopolymer resin
* Rapid reconfiguration of mass distribution and models
tether attachments * Rapid reconfiguration of mass distribution, tether
« Non-real-time image processing attachments, and fin geometries
* No closed-loop control ~* Real-time image processing and closed-loop control

tracking markers
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Formally fusing experiments with numerical tools in
co-design

Key notation:

Experiments J(Pval)
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Case study in experimentally-infused plant/controller
optimization

Target system: The Altaeros Buoyant Airborne Turbine (BAT)

Two purposes: Energy generation and telecommunications
To serve the first purpose, the BAT must remain substantially stationary, both in position and attitude

Key plant design variables: Center of mass location, stabilizer surface areas
Key controller variable: Pitch angle setpoint

Image credits: Altaeros Energies, Inc.
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A case study: Performance index

Goal: Maintain stationary flight in the presence of * >
environmental disturbances so that it is possible to Alibome
simultaneously produce energy and provide ancillary j shroud

services (e.g., telecommunications)
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A case study: Parameters to optimize and
environmental perturbation profile

Plant parameters: Normalized center of mass

location (CM/3), horizontal stabilizer
area (A"), vertical stabilizer area (4")

Control parameter: Trim pitch angle, 6,

Two types of perturbations considered:

* Flow speed variations: v; = 0.205%,1}2 =
0.2457, v, = 0.285 =
S S
* Open-loop lateral perturbations:

 Pullin aft port tether at full speed for 1s
Pause controller for 2s

w

wind

__________________________________________________________

Position, velocity
z feedback
sp

o] Map altitude

setpoint

—|  Map pitch 0 " Altitude/attitude | 123 | |
setpoint sp control
T.;asp =0

Focal point of this research

Va 4 Vf low

uafr.par'r k

Open loop perturbation

0

Clesed loop control 100 Closed loop contro 200 Closed loop control 300
t



Case study: Dynamic behavior

Optimal configuration
based on numerical
model alone:

Optimal configuration
after experimentally
infused optimization:




Some observations about experimentally infused co-
design

Advantages:

* Formally fuses expensive (and/or time consuming) experiments with cheap, less accurate simulations
 Methodically explores the entirety of the (reduced) design space at each iterations

Limitations:

* Plant and control design parameters are not treated fundamentally differently
e Actual experiments have only focused on two parameters (2-model simulations on 4 parameters)

To address these limitations, can we leverage the fact that control design parameters can be

adjusted during experiments, whereas plant design parameters need to be adjusted between
experiments?




Nested experimental co-desigh — an introduction

Nested framework (reminder): Our nested experimental co-design framework:
Same tools as earlier — plant design parameters only
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Control design optimization during experiments/simulations (new!)



Case study — Initial simulation-based results

Design parameters:

Xm: Longitudinal center of mass location (plant)
* k,: Stabilizer area scale factor (plant) — Each stabilizer area given by A = k A, om

05y : Trim pitch angle (controller)

Performance index: Main goal — Reduce variations in heading angle (), roll angle (¢), and

Zenith (“blowdown”) angle (®) T¢
J=] |kp (@) +kgpdp(t) + ke®(t)]dt

T;

Continuous environmental perturbation profile:

* Key point: Because we are continually adjusting the controller design parameter(s), we need
to excite the system with a consistent perturbation profile

T _ _ T
Vy = Upgse T Uxo SIN (wdistt + E) V) = Vyo Sin(wgiset) Uz = Uz SIN (wdistt + E)



Case study — Initial simulation-based results

Design space reduction:
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Moving forward: Co-design for power-augmenting
crosswind flight

Simple quasi-static

U,
2D analysis: w

|'/

N
N

ot g \' Wing/aerostat Wlnd vapp Y FL el

N

\‘ o /,.‘ with turbines and J_‘ \""\.___\ F D
wind 7" generator :> % (\H \]/ \
o 5; % X
powerflowd / N\~
/ F tether

Key point: High (or even moderate) lift/drag ratios can lead to
theoretically huge power augmentation

Flying perpendicular to the wind (figure-8 patterns or circles) increases the apparent wind speed, vy,

Instantaneous power production is proportional to vg’pp

Plant design challenge: Developing a stable airborne system that maximizes lift/drag
Control design challenge: Optimizing crosswind path parameters under variable wind profiles



Moving forward: Multi-scale experimentally infused
co-design

Main idea: Formally fuse numerical/analytical models with experiments at
multiple scales (e.g., lab-scale and full-scale)

e Often, not all dynamic characteristics can be captured at lab scale (example: 3D printed
water channel models characterize flight dynamics but are not power producing)
* Significant costs associated with full-scale testing

Example of a multi-scale
framework for tethered
energy systems:

Water channel -> pool
tow testing -> full-scale
flight testing




Moving forward: Robust co-design with respect to
environmental disturbance profiles

Presently, experimental co-design relies on a prescribed, deterministic
environmental disturbance profile

Idea: Perform design of experiments over the combined design and disturbance

Space Environmental
parameter space °
¢ !
o
Plant
° parameter space
Control parameter ®

space

Challenge: Huge environmental disturbance space must be parameterized
compactly to limit the required number of experiments
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