Maximizing Vehicle Fuel Economy through the Real-Time, Collaborative, and Predictive Co-Optimization of Routing, Speed, and Powertrain Control

Penn State University, University Park: Hosam K. Fathy, Sean Brennan, Stephanie Stockar
Massachusetts Institute of Technology: Domitilla Del Vecchio
University of North Carolina, Charlotte: Christopher Vermillion
Volvo Group North America: Samuel McLaughlin
Introduction of the team

Domitilla Del Vecchio
Expert in connected and automated vehicles, coordinated vehicle control, and intersection automation.

Samuel McLaughlin
External Research Manager within Advanced Technology and Research for Volvo Groups Trucks Technology.

Chistopher Vermillion
Expert in hierarchical control, model predictive control, and optimal energy management.

Hosam Fathy
Expert in powertrain modeling, vehicle power management, and hardware-engine-in-the-loop simulation.

Sean Brennan
Expert in connected vehicles, vehicle automation, and vehicle control.

Stephanie Stockar
Expert in modeling and control of internal combustion engine and vehicle powertrain.
Project Objective and Description

Improve fuel economy through combined **collaborative** and **predictive** optimization, using **hierarchical model predictive control** to merge vehicle control and powertrain control.

Vehicle control level:
route optimization, speed trajectory optimization, platooning, intersection management

Powertrain/engine control level:
transmission optimization, engine/accessory optimization

Vehicle control level:
- Optimal Routing
- Platooning
- Harmonization
- Terrain-Predictive Co-Optimal Powertrain & Chassis Control
- Intersection Automation

20% reduction in fuel consumption

Powertrain/engine control level:
- Transmission optimization
- Engine/accessory optimization

Project Objective and Description

Goal #1: Anticipate
- Traffic/congestion
- Traffic lights
- Surrounding vehicle speeds

Goal #2: Coordinate
- Platooning
- Speed trajectories
- Dept.s/arrivals at intersections

Goal #3: Optimize (Chassis Control)
- Vehicle route
- Speed trajectory
- Choice of mode (acc/decel/coast)

Goal #4: Optimize (PT Control)
- Accessory load
- Engine pedal
- Engine start/stop
- Cylinder de-activ.
- Driveline diseng.
- Gear shifting
Project Innovation and Impact

A sample of the impact of prediction and speed trajectory optimization alone with and without traffic stop prediction

Technology Impact: Reduce vehicle fuel consumption by 20% for a broad variety of urban, suburban, and highway driving scenarios
Technology-to-Market approach

- The technology will be developed in collaboration with Volvo Group North America and will be validated using a Volvo Truck.
- This technology will be valuable for different vehicle sizes and engines.

Dedicated on-vehicle electronic control unit (ECU) for Chassis control, transmission control, and engine/accessory control will be developed.

Optimal vehicle routing will be developed as a cloud-based service.
- It will allow our team to rapidly deploy different products it develops to the market independently.
- It will make it possible to distribute the cost among many potential users of the service.
Key Challenges

- Need for an unified framework that enable the integrated co-optimization of powertrain and chassis functions.

- Co-optimal control is a fundamentally challenging problem because it is a **multivariable** and **multi-objective** problem.

- The combined dynamics of a vehicle’s chassis and powertrain span multiple time spatial and temporal scales.

- Fuel-conscious optimal vehicle control is a fundamentally non-convex optimization problem.

- Coordinated optimization among multiple vehicles creates significant challenges from the perspective of cyber-security.