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Presentation outline
• Why: Nuclear power plants and 2nd license renewals
• How radiation alters the structure of silicates?
• Do changes in structure affect reactivity – how so?
• Can we estimate the extent of reactivity alteration?
• Can we identify “radiation tolerant” materials?
• Summary and conclusions
• Acknowledgements
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Recent observations: Seabrook station

• ASR found in several locations at Seabrook (2009)
• Has impacts on service-life, and obvious $$$ cost

• Two questions: (a) Origin, and, (b) Prognosis
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Why could atomic disordering be an issue ? 

Field et al. 2015
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What could happen in extreme environments?
• It is important to assess the 

role of degradation including:
• (i) Mechanical damage that is 

caused by aggregate expansion
• (ii) Chemical damage is caused 

due to “concrete dissolving 
from within” – degradation 
mechanism known as alkali-
silica reaction (ASR)

• Question: Can irradiation 
induce ASR in nuclear plants ?
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Which aggregates do we care about and why ?
• Silicates and carbonates
• (100) surface of quartz (SiO2) 

and calcite (CaCO3) crystals
• Others: Albite (NaAlSi3O8) and 

almandine (Fe3Al2(SiO4)3) offer 
percolated and non-percolated 
silicate networks

• Examined: (i) pristine, and, (ii) 
ion implanted (irradiated)

• The irradiations were carried 
out using Ar+ ions at 400 keV
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Disordering: What does irradiation do?
• Think of a “billiards” game …
• You have a crystal structure, and 

it is disturbed by an incoming 
high-energy (colliding) particle

• The colliding particle is an Ar+ ion
• An altered “disordered” 

structure forms, and we can 
assess such disorder using SAED: 
selected area electron diffraction 
using a transmission electron 
microscope (TEM-SAED)

• “Order-to-disorder” transition

Crystal Structure

Ar+ ion   
(or neutron)

Ballistic event
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Disordering of a percolated silicate: Quartz
• SAED allows for assessment of 

crystal structure and atomic 
positions with fine resolution

• Quartz: Is fully damaged by 
irradiation, and retains none of 
its initial structural attributes 
(e.g., see change from II-to-I)

• Thus, quartz is “disordered”
• So what is impact on physical 

and chemical properties, e.g., 
its reactivity (dissolution rate) ? 
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Molecular simulation of radiation damage
• In the case of radiation damage 

assess how colliding particles 
alter the atomic network

• Quantify how “kinetic energy” 
results in atomic displacement 
and thus “damage cascade”

• No consideration of electronic 
effects following irradiation

• Focus placed on quantifying 
evolution of the density and 
network rigidity (nc, unitless)

α-Quartz

Disordered SiO2
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Disordering of percolated and non-percolated 
silicates (albite and almandine)

• We have extensively utilized 
MD simulations to assess the 
alterations to the structure

• Two observations: (a) Loss of 
medium range order (MRO, > 3 
angstroms), and, (b) induced 
floppiness in structure (larger 
SD in bond angle distributions)

• Bond lengths and coordination 
numbers remain unaffected

Si-O-Si
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Analysis of the atomic network’s rigidity

• Mechanical truss: slender, but rigid members which link together at joints
• Simple analogy: joints = atoms, and slender members = atomic bonds

• Several options: determinate (m = 2j-r), indeterminate (m+r > 2j), unstable …
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Analysis of the atomic network’s rigidity

• For a central atom, determine the number of permissible BS and BB constraints by 
assessing the radial and angular excursions, of each neighboring atom (MD simulations) 

• Low (or high) radial/angular excursions are associated with intact (or broken) constraints
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Vertical scanning interferometry (VSI)
• Combination of optical and 

interference microscopy
• Lateral resolution limited by the 

optics, currently: 80 nm
• Z-resolution, determined by 

ability to track interference 
fringes (beam split) ≈ 0.1 nm

• NewView 8200 optical profiler 
fitted with multiple objectives

• Typical image field: 1000s of µm2

and can be further expanded



Gaurav N. Sant                              ARPA-E Workshop: Extremely Durable Cementitious Materials, April 10-11, 2018        Slide 14 of 27

Interferometric Imaging strategy
• Two adjacent surfaces:

– Sample surface (changes in time)
– PTFE reference (quartz is another)

• Compare surfaces to each other. 
This allows for absolute height 
analysis (Sa = 29 ± 8.7 nm)

• It is critical to have an “inert” 
reference as due to imaging 
resolution, small changes (10s of 
nanometers) can completely 
change the results

• PTFE is noted to be truly inert 

“Fiducial mark” to 
re-orient and re-
align the images
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Reactions (at surfaces and interfaces)

‘Bare’ calcite ‘Masked’ (unreacted)

0.1 mm 0.5
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How irradiation affects physical properties?
• Significant change in density 

occurs quartz (15% decrease) 
= “volume expansion” and 
related mechanical damage

• In addition nc, the number of 
constraints per atom is 
significantly altered in quartz 
showing sharp decrease

• But how are these indicators 
related to reactivity, durability 
and service-life ?
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Consider the (simple) case of silica and quartz
• Of course, it is well-know that 

silica dissolves faster than quartz
• But the explanation of why so is 

qualitative” – “poor-order or lack 
of crystal structure” in silica

• Quartz: dissolution rate increases 
3 orders of magnitude following 
its irradiation – this has obvious 
impacts on durability

• How this links atomic topology 
and changes in it, to reactivity ? 

7 8 9 10 11 12 13 14 15
Solvent pH (pH units)

10-4

10-3

10-2

10-1

100

101

102

103

104

D
is

so
lu

tio
n 

R
at

e 
(D

R
, n

m
/h

) Fumed silica
(001) Quartz: Implanted
(001) Quartz: Pristine
MIN-U-SIL 10



Gaurav N. Sant                              ARPA-E Workshop: Extremely Durable Cementitious Materials, April 10-11, 2018        Slide 18 of 27

Network rigidity as an indicator of reactivity
• The number of constraints is 

an effective indicator of solid’s 
reactivity – i.e., of tendency for 
silicate dissolution

• The energy required to break a 
unit constraint is controlling 
feature that relates to other 
transport controlled processes, 
e.g., diffusion, dissolution and 
conduction since EA = ncE0, 
reveals the activation energy

rdiss =K0exp[ncE0/RT]: Arrhenius like relation
where: K0 = 2.6 x 1010 μmol/(m2.s)

E0 ≈ 25 kJ/mole (i.e., the energy needed to 
rupture a single atomic constraint)
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Network rigidity reveals the activation energy
• Measured dissolution rates of 

quartz and amorphous silica 
across a range of temperature

• Recover, experimental EA of 
dissolution. Expectedly, EA for 
quartz higher than for silica

• For quartz, nc = 3.7, for silica 
glass nc = 2.9 (calculated). 
Since EA = ncE0 this ensures EA
≈ 95 kJ/mole for quartz, and 
EA ≈ 72 kJ/mole for glassy silica 
…
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Dissolution, diffusion and conduction have a 
common “topological origin” … ?

• If we compare the activation 
energy of self-diffusion (Na, 
K), conduction (Na, K) and 
dissolution (quartz, silica) it 
appears these processes have 
a common “topological origin”

• This suggests that each of the 
processes have a common 
energy barrier: the rigidity of 
the atomic network – suggests 
signals of chemical durability
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So how do we estimate reactivity alterations?
• It has been demonstrated that 

reactivity is correlated with nc

• So, if we know the change in nc
(Δnc) we can estimate the change 
in reactivity (DER; from TCT)

• Consider as an example, albite. 
Δnc = 0.307 (shows transition 
across the isostatic boundary)

• Reactivity of albite elevates by a 
factor of 20 from the pristine to 
the irradiated (disordered) state
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 pH 10 pH 12 pH 13 Average 
25°C 22.45 ± 17.62 19.77 ± 5.60 14.49 ± 2.73 16.77 ± 3.52 45°C 14.15 ± 7.99 13.98 ± 8.37 15.79 ± 9.87 

E0 (kJ/mole) pH 10 pH 12 pH 13 Average 
25°C 25.14 24.11 21.60 

23.38 ± 1.23 45°C 22.87 22.77 23.82 
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Does the topological scaling always work?
• No, the correlation to TCT applies 

for percolated silicates (where 
SiO4 groups percolate in 3D)

• Δnc = 0.67; which estimates DER 
on the order of 200 times. But, 
measured DER is around 2 times

• In non-percolated silicates, no 
change in silicate connectivity  
but altered cation coordination

• Dissolution proceeds by rupture 
of cation bonds, not SiO4 groups  

 

𝐷𝐷𝑟𝑟 = −𝐶𝐶𝑒𝑒−𝛼𝛼
𝑒𝑒

𝑘𝑘𝐵𝐵𝑇𝑇
∆𝑈𝑈   
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Aggregates that may offer radiation tolerance?
• Across silicates – more or less 

– chemical reactivity enhances 
up on radiation exposure

• Calcite shows effectively no 
change in nc or its reactivity 
independent of irradiation

• This is because the ionic bond 
(Ca-O) features recovery in 
bond parameters as stimulus 
is removed. This is evidenced 
by examination of SAED data 
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Calcite remains unaffected by irradiation
• Calcite: Remains essentially 

unaltered by irradiation, with 
no change in crystal structure 
being noted (IV-to-III)

• Quartz: Is fully damaged by 
irradiation, and retains none 
of its initial structural form 
(see change from II-to-I)

• This is also reflected by (lack) 
of change in nc as assessed by 
topological constraint theory  
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Take-away messages …
• Chemical durability in transport 

unhindered conditions can be 
robustly described by “atomic 
topology” of inorganic solids

• This requires characterization of 
the rupture energy of atomic 
constraints (E0) which can be 
estimated by MD simulations

• These are accelerated pathways
by which we can assess and 
specify materials for durability 
and reactivity (new SCMs)
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Summary and outcomes
• By a pioneering combination of dissolution analysis and 

and MD simulations we have revealed the atomistic origin 
of chemical reactivity and its linkages to durability 

• This offers an original “topological framework” which 
rationalizes the differing composition and structure 
dependent reactivities of a range of inorganic solids. This 
explains reactivity alterations under radiation exposure

• The topological framework has also explained why different 
fly ashes react at the rates that they do, and how concrete 
creep is dictated by the composition of the C-S-H
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