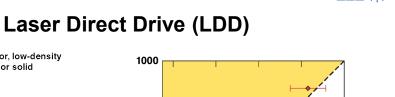
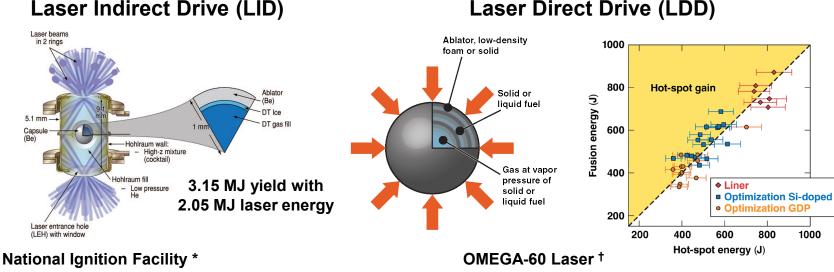

Diode-pumped, solid-state laser (DPSSL) drivers for Inertial Fusion Energy (IFE)

Jon Zuegel Division Director, Laser & Materials Technology Professor of Optics University of Rochester

Enabling Technologies for Improving Fusion Power Plant Performance and Availability Workshop, New Orleans, LA March 7, 2023


The difference between conventional "hot-spot" and two-step ("fast" or "shock") ignition is similar to that between a diesel and gasoline engine

Hot-Spot Ignition **Fast Ignition** Shock Ignition Hot spot Shock pulse Fast ----> injection of heat ρ ρ Low-density central spot ignites Fast-heated side spot ignites Spherical shock wave ignites a high-density cold shell a high-density fuel ball a high-density fuel ball $\rho T_{\text{hot}} \approx \rho T_{\text{cold}}$ (isobaric) $ho_{hot} \approx
ho_{cold}$ (isochoric) $\rho T_{\rm hot} \gg \rho T_{\rm cold}$ Laser Indirect Drive (LID) Laser Direct Drive (LDD) maybe Laser Direct Drive (LDD) or


Laser Indirect Drive (LID)

Laser Direct Drive (LDD)

NIF demonstrated hot-spot ignition using laser indirect drive, and OMEGA recently demonstrated hot-spot gain >1

UR

- ~ 2 MJ (UV)
- 192 (~40×40 cm²) beams in 48 quads ٠
- polar-drive configuration •
- ~ 1 shot per 8 hours

- ~ 30kJ (UV)
- 60 beams (~30-cm diam.) •
- spherical-drive configuration •
- ~ 1 shot per hour

1-2 MJ laser drive will produce higher target gains than LID

Top-level requirements for IFE solid-state laser drivers



• IFE laser-driver requirements:

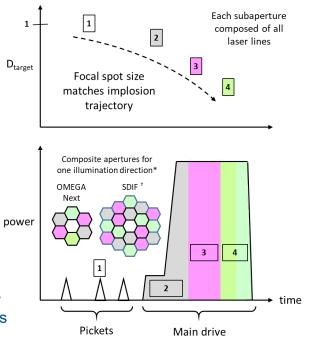
Energy:	compression: MJ-class with many (100s to 1000s) beamlines fast ignition: 10-150 kJ with multiple beamlines			
Wall-plug efficiency:	\geq 10% [higher is better!]			
Capital costs:	"competitive" [Overnight Capital Cost (OCC) and Levelized Cost of Electricity (LCOE)]			
Repetition rate:	\sim 1-10 ⁺ Hz [depends on target yield, requires diode pumping]			
Wavelength:	compression: near UV [~1/3 μm, possibly 1/2 μm] fast ignition: near IR [~1 μm]			
Pulse length:	compression:nanosecondsfast ignition:picosecondsathermal:femtoseconds			
Temporal pulse shaping:	high precision (~1%) and high dynamic range (~100:1)			
Bandwidth/tunability:	depends on IFE approach [bandwidth expands design space for <u>all</u> approaches]			
Focal spot uniformity:	depends on IFE approach [LDD benefits from zooming]			
Service Lifetime (MTTF):	Gigashots (1 year @ 10 Hz = 315,360,000 shots!)			

The Laser Inertial Fusion Energy (LIFE) concept applies diode-pumped, solid-state laser (DPSSL) technology for Laser Indirect Drive (LID)

LIFE* laser architecture

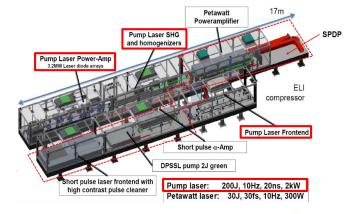
 $10.5 \times 2.2 \times 1.35 \ m^3$ Line Replaceable Unit (LRU)

* A. Bayramian *et al.*, "Compact, Efficient Laser Systems Required for Laser Inertial Fusion Energy," Fusion Science and Technology, 60:1, 28-48, (2011); <u>https://doi.org/10.13182/FST10-313</u>

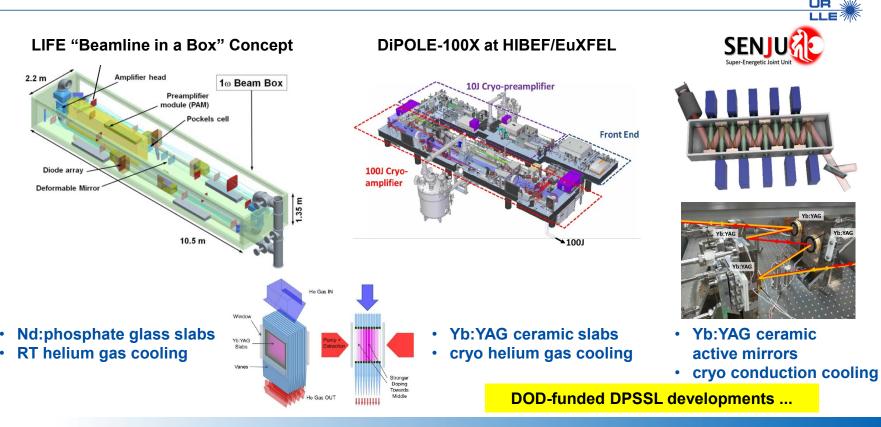

TABLE I. Top level laser system requirements

Characteristic	Requirement
Total laser energy	2.2 MJ
Total peak power	633 TW
# beamlines	384 (48 x 8)
Energy per beamline (3w)	5.7 kJ
Wallplug efficiency	15%
Repetition rate	16 Hz
Lifetime of system	30 x 10 ⁹ shots
Availability	0.99
Maintenance	< 8 hrs
Beam pointing	100 µm rms
Beam group energy stability (8 beams)	<4% rms
Beam to beam timing at target	< 30 ps rms
Focal spot (w/ CPP*), 95% enclose	3.1 mm
Spectral bandwidth, 3@ (GHz)**	180
Prepulse (20 ns prior to main)	$< 10^{8} \text{ W/cm}^{2}$

Many relatively moderate-scale beamlines operating at N discrete wavelengths could deliver broadband irradiation to LDD targets to mitigate/suppress LPIs*


- Modular approach provides scalability across a range of ICF and IFE facilities and enables composing <u>complex pulse</u> <u>shapes</u> and <u>focal spot zooming</u> to optimize LDD drive
- Small apertures enable a wider range of gain material options
- Off-the-shelf optical components will spur competitive commercial development and mass production leading to economies of scale and broader supply chains
- **Moderate-scale lasers (100s J to few kJ)** could benefit other markets/applications and enable favorable development pathways
- Employ proven DPSSL architectures and enable new concepts to improve system performance, efficiency, and reliability.
 - StarDriver* requires up to N different optimized IFE DPSSL designs
 - PolyKrom[†] concepts (OPA + DPSSL) reduce the # of required lasers

- * D. Eimerl et al., "StarDriver: A Flexible Laser Driver for Inertial Confinement Fusion and High Energy Density Physics," J. Fusion Energy vol. 33, pp. 476–488 (2014).
- [†] J. D. Zuegel and C. Dorrer, "PolyKröm: Two New Broadband Laser Architectures for Laser Direct-Drive Inertial Fusion Energy (LDD-IFE)," IFE white paper submitted to the 2022 IFE Basic Research Needs Workshop, 21–23 June 2022.


The state-of-the-art for high-average-power diode-pumped, solid-state lasers (HAP-DPSSLs) has advanced significantly with some systems already fielded

Stronger Doping Towards Middle

HAPLS pump laser @ ELI Beamlines

- Nd:phosphate glass slabs RT helium gas cooling
- RÖCHESTER

The state-of-the-art for high-average-power diode-pumped, solid-state lasers (HAP-DPSSLs) has advanced significantly with some systems already fielded

IFE BRN Workshop identified Priority Research Opportunities (PROs) for diode-pumped, solid-state laser (DPSSL) drivers

- PRO 4-1: Perform IFE driver system-level architecture conceptual design studies [LID + LDD + FI]
 - IFE targets, laser tech and architectures, and balance of plant require self-consistent designs with peer review

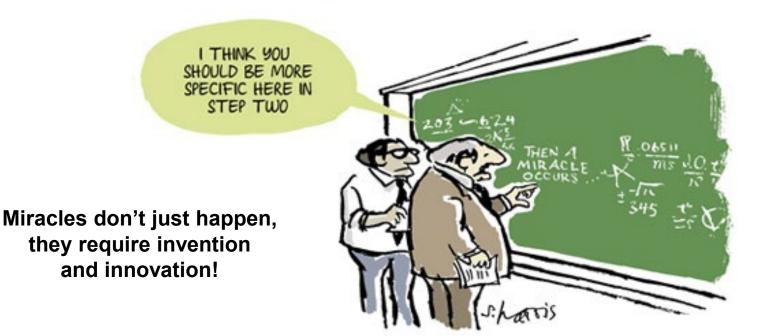
PRO 4-2: Reduce the cost of diode pumps in DPSSL technologies [LID + LDD + FI]

Boost performance and establish mass production of diode lasers

- Improve electro-optic efficiency at high brightness
- Advance diode reliability and MTTF assurance
- Reduce cost of diode production to US\$0.01/Watt
- Standardize + develop multiple sources for pump diodes
- PRO 4-3: Increase the damage threshold optics and crystals [LID + LDD + FI]
 - Optics and optical coatings with high UV laser-induced damage threshold at high average powers

PRO 4-4: Build integrated laser system demonstrators [LID + LDD + FI]

- Demonstrate compact, industrial-grade laser modules to prove component and control technologies; retire most driver risks for all three primary DPSSL-based approaches (LID, LDD, and LDD with FI)
- PRO 4-6: Design systems for broadband lasers [LDD + FI]
 - New DPSSL gain materials and nonlinear optics (OPA, frequency conversion, plasma optics)
- PRO 4-7: Design and implement final optic survivability at ultra-high intensity [LID + LDD + FI]
 - Fast ignition schemes require large-aperture diffraction gratings and reflective focusing optics


What kind of TRL jumps might be possible? Near-term: 2-3 years / Mid-term: 3-9 years / Long-term: 10+ years

	Technology	Current state	Technical gaps	Pathway	
TRL5 MRL1	Semiconductor diode lasers	 500W/bar: human alignment 1kW bars available but w/ reduced lifetime and ~55% E-O efficiency 	 Reduce cost to < \$0.02/W Lifetime needs to improve > 10x Improve E-O efficiency to 70% 	 <u>Mid-term</u>: Increase to >2kW/bar, E-O to 70% <u>Long-term</u>: Automate manufacturing, Standardization, Multiple sources 	\$\$ \$\$\$
TRL4	Laser wall-plug efficiency	 ~5% typical for pulsed lasers ~16% (unpublished @ 1ω) 	 improve extraction and pump-efficiency 	• <u>Mid-term</u> : new laser schemes + gain media	\$\$
TRL4	3ω Freq. Conv.	KDP w/ high LIDT at 0.1% BW	 KDP linear absorption too high for high-average powers 	 <u>Mid-term</u>: new materials (e.g. LBO) <u>Long-term</u>: larger apertures (if required) 	\$\$
TRL4	Gain Isolation	Moderate-scale KDP Pockels cells + Faraday isolators	 KDP linear absorption too high larger apertures (some schemes)	 <u>Mid-term</u>: DKDP and/or FR w/ ppm absorption and depolarization <0.1% 	\$\$
TRL4	Final focusing	Fused silica 3ω optics	neutron/gamma-induced damage	Fresnel/reflective focusing (depends on scheme)	\$\$
TRL3	Gratings	~ 1-m scale < 1 J/cm² damage threshold	 Higher damage thresholds &/or larger gratings required to deliver FI energy 	• <u>Mid-term</u> : scale existing fabrication processes	\$\$\$
TRL4		STUD pulses for LID	Complex pulse generationPhysics demonstration	 <u>Mid-term</u>: Front-end laser development and physics demonstration at relevant scale 	\$
TRL4 TRL3	LPI mitigation	FLUX broadband for LDD	FLUX concept demo only at small scale	 <u>Near-term</u>: FLUX physics demo on OMEGA <u>Mid-term</u>: PolyKrōm OPA demo on OMEGA <u>Long-term</u>: PolyKrōm DPSSL or <u>StarDriver</u>? 	\$ \$\$\$

Thanks for your attention!

