

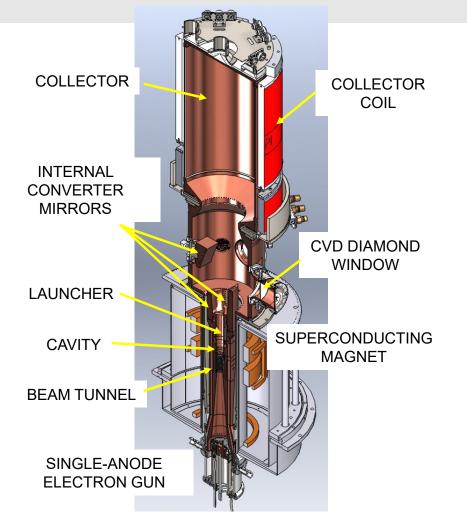
NEXT GENERATION GYROTRON SOURCES FOR ECH

M. Blank, S. Cauffman, K. Felch, P. Borchard, CPI, Palo Alto, CA

ECH SYSTEMS AROUND THE WORLD

OUTLINE

- CURRENT CAPABILITIES
- ENABLING TECHNOLOGIES
- CHALLENGES FOR NEXT GEN GYROTRONS
- SUMMARY AND OUTLOOK



COMMERCIAL GYROTRON CAPABILITIES:140 – 170 GHz, 1 MW CW

CPI 140 GHz , 900 kW, 1800 SEC

FREQUENCY	140 GHz
OUTPUT POWER	0.9 MW
PULSE DURATION	1800 SEC
MAX CATH-BODY VOLTAGE	85 kV
MAX BODY-COLL VOLTAGE	30 kV
MAXIMUM CATH-COLL VOLTAGE	60 kV
MAXIMUM BEAM CURRENT	45 A
MAX BODY CURRENT	40 mA
INTERACTION MODE	TE _{28,7}
OUTPUT MODE	TEM ₀₀
MODE PURITY	97%

CPI 140 GHz , 900 kW, 1800 SEC

FREQUENCY	170 GHz
OUTPUT POWER	0.96 MW
PULSE DURATION	1000 SEC
MAXIMUM CATH-COLL VOLTAGE	50 kV
MAXIMUM BEAM CURRENT	45 A
INTERACTION MODE	TE _{25,10}
OUTPUT MODE	TEM ₀₀
MODE PURITY	97%

OUTLINE

- CURRENT CAPABILITIES
- ENABLING TECHNOLOGIES
 - LARGE BORE HIGH FIELD SUPERCONDUCTING MAGNETS
 - CVD DIAMOND WINDOWS
 - HIGH-EFFICIENCY INTERNAL MODE CONVERTERS
 - ADVANCED MODELING AND DESIGN TOOLS
- CHALLENGES FOR NEXT GEN GYROTRONS
- SUMMARY AND OUTLOOK

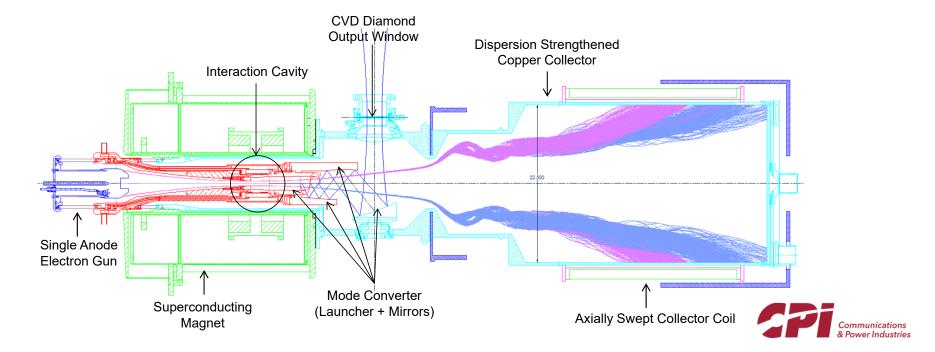
PRODUCTS

POWER

MICROWAVE

ENABLING TECHNOLOGY: SUPERCONDUCTING MAGNET

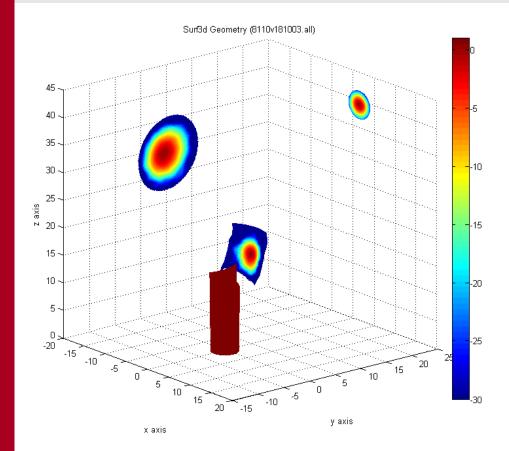
ENABLING TECHNOLOGY: CVD DIAMOND WINDOWS

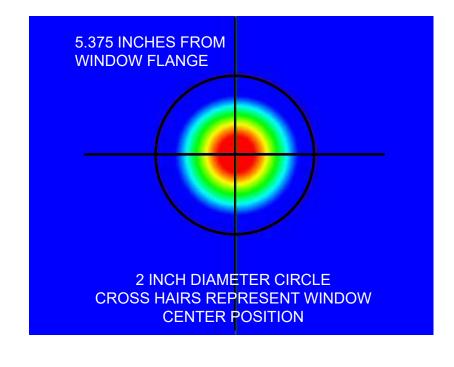

ENABLING TECHNOLOGY: CVD DIAMOND WINDOWS

- BY THE MID-1990s, GYROTRONS COULD GENERATE MORE POWER THAN VACUUM WINDOWS COULD HANDLE
- TYPICAL 1990s GYROTRON WINDOW MATERIALS
 - SAPPHIRE
 - $\ AL_20_3$
 - BeO
 - BN
 - MAXIMUM CW POWER-HANDLING CAPABILITY WAS < 500 kW
- DE BEERS PERFECTED LARGE DIAMETER CVD DIAMOND WINDOW PRODUCTION
- "MAGIC" MATERIAL
 - STRONG
 - 4 TIMES THE THERMAL CONDUCTIVITY OF COPPER
 - LOW-LOSS IN MILLIMETER WAVE REGIME (30 300 GHz)

ENABLING TECHNOLOGY: HIGH EFFICIENCY INTERNAL MODE CONVERTERS

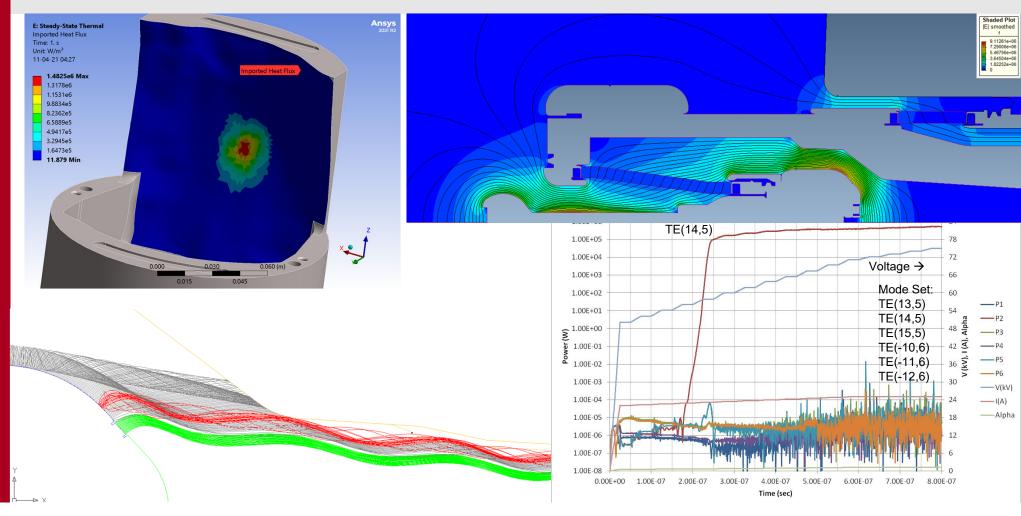
- IN THE EARLY 1990s, NEW IDEAS FOR CONVERTERS TO TRANSFORM HIGH-ORDER GYROTRON MODES TO GAUSSIAN BEAMS WERE COMING INTO FASHION
- INTERNAL CONVERTERS ALLOWED THE USE OF LARGE DIAMETER AND DEPRESSED COLLECTORS




ENABLING TECHNOLOGY: HIGH EFFICIENCY INTERNAL MODE CONVERTERS

- EARLY VERSIONS OF INTERNAL CONVERTERS SUFFERED FROM LOW EFFICIENCY AND STRAY RF IN GYROTRON
 - TYPICAL STRAY RF 5 7% OF GENERATED POWER
 - REDUCED OUTPUT POWERS
 - DETRIMENTAL HEATING IN GYROTRON, ESPECIALLY AT LONG PULSE WIDTHS
- IN THE LAST 30 YEARS EFFICIENCY OF CONVERTERS HAS
 VASTLY IMPROVED
 - DESIGN TOOLS
 - FABRICATION AND MECHANICAL VERIFICATION
- INTERNAL STRAY RF LOSSES NOW VERY LOW, 2 3%
- OUTPUT BEAMS NEARLY PERFECT, 98 99% GAUSSIAN

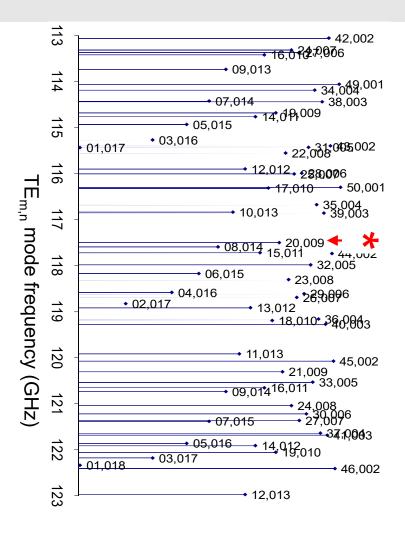
ENABLING TECHNOLOGY: HIGH EFFICIENCY INTERNAL MODE CONVERTERS


MEASUREMENT

DESIGN

14

ENABLING TECHNOLOGY: ADVANCED MODELING AND DESIGN TOOLS


15

OUTLINE

- CURRENT CAPABILITIES
- ENABLING TECHNOLOGIES
- CHALLENGES FOR NEXT GEN GYROTRONS
- SUMMARY AND OUTLOOK

- HIGHER FREQUENCY
 - DEMO AIMING AT > 200 GHz
 - CFETR 170/230 GHz
 - HIGHER ORDER MODES
 REQUIRED FOR 200 GHz AND
 ABOVE
 - IDEAS TO TAME MODE
 COMPETITION INCLUDE
 EXTERNAL MODE LOCKING,
 COAXIAL CAVITIES

- HIGHER OUTPUT POWER PER GYROTRON
 - 1.5 2 MW GYROTRONS PLANNED FOR MANY MAJOR ECH SYSTEMS
 - MODE COMPETITION, COLLECTOR POWER DENSITIES MUST BE ADDRESSED

- GYROTRON EFFICIENCIES > 60%
 - REDUCE MODE COMPETITION
 - MORE EFFICIENT DEPRESSED COLLECTORS
 - MULTI-STAGE DEPRESSED COLLECTORS
 - MUCH MORE DIFFICULT TO ENVISION EFFECTIVE MULTI-STAGE DC FOR A GYROTRON BEAM THAN FOR A LINEAR BEAM DEVICE
 - EFFICIENCIES > 70% BUMPING UP AGAINST BASIC DEVICE PHYSICS LIMITS, DIFFICULT TO ENVISION

PRICE PER WATT

 – PRESENT COST FOR A 1 MW CW GYROTRON WITH TURNKEY SUPERCONDUCTING MAGNET SYSTEM IS \$2 -\$3 /WATT

 THAT PRICE DOES NOT INCLUDE POWER SUPPLY/CONTROL OR WATER-COOLING SYSTEMS

– COST OF A 2 MW GYROTRON AND MAGNET WILL BE JUST 10 OR 15% MORE THAN A 1 MW UNIT

• \$1 - \$2/WATT

- BEST WAY TO REDUCE COST/WATT IS MORE POWER FROM EACH GYROTRON

- RELIABILITY
 - ECH SYSTEM RELIABILITY IMPROVING OVER PAST DECADES
 - FUTURE ECH SYSTEMS WILL NEED > 95%
 - BEST WAY TO ACHIEVE 100% RELIABILITY IS TO OVER SPECIFY AND BACK OFF
 - 1 MW CW GYROTRONS WOULD MISS FEW PULSES AND LAST LONGER IF OPERATED AT 500 kW

HOW TO ADDRESS CHALLENGES

- FOCUSED AND SUSTAINED DEVELOPMENT PROGRAMS
 - ADVANCING STATE-OF-THE-ART UNDER FIXED-PRICE CONTRACTS WITH FIRM SPECIFICATIONS VERY LIMITING
 - DEVELOPMENT PROGRAMS AND PROTOTYPES FOR INDUSTRIAL GYROTRON MAKERS FOSTER PROGRESS
 - COMMERCIAL GYROTRON MAKERS IN OTHER COUNTRIES BENEFIT FROM STRONG GOVERNMENT INVESTMENT

PRODUCTS

POWER

MICROWAVE

OUTLINE

- CURRENT CAPABILITIES
- ENABLING TECHNOLOGIES
- CHALLENGES FOR NEXT GEN GYROTRONS
- SUMMARY AND OUTLOOK

SUMMARY AND OUTLOOK

- FOUR WORLD-WIDE GYROTRON MANUFACTURERS CURRENTLY ABLE TO ACHIEVE 1 MW LONG-PULSE OPERATION AT FREQUENCIES UP TO 170 GHz
- FUTURE ECH SYSTEMS WILL NEED
 - HIGHER FREQUENCIES (200 300 GHz)
 - HIGHER OUTPUT POWER PER GYROTRON (1.5 2 MW)
 - IMPROVED EFFICIENCIES (> 60%)
 - LOWER COST/WATT
 - HIGH RELIABILITY (> 95%)
- ACTIVE RESEARCH AND DEVELOPMENT PROGRAM
 NEEDED TO CONTINUE ADVANCEMENT OF STATE-OF THE-ART