ARPA-E Electric Motor Workshop
Hybrid Electric Aircraft Design Space, Feasibility and Technical Challenges

08 August 2019

Chuck Lents
Electrified Propulsion (EP) System Architectures

4 basic configurations

Parallel Gas-Electric Hybrid
- All thrust from main fans, fan power from liquid fuel through GT and battery through LS motor

Full Series Turboelectric Hybrid
- GT creates electric power from liquid fuel, electric power distributed to multiple electric fans for thrust, battery used for load leveling

Partial Series Turboelectric Hybrid
- Full Series Turboelectric Hybrid, with addition of thrust from GT LS fan

All Electric (not a Hybrid)
- Electric power from battery distributed to multiple electric fans for thrust

United Technologies Research Center

This page does not contain any export controlled technical data
Electrified Aircraft Propulsion (EAP) Concepts

Example EP implementations

Parallel Gas-Electric Hybrid

Credit: Boeing/NASA

Full Series Turboelectric Hybrid

Credit: Zunum

Partial Series Turboelectric Hybrid

Credit: NASA

Electric

Credit: NASA

This page does not contain any export controlled technical data
Why Hybrid Electric

Enables New Missions

Enables New Business Models

Enables Fuel Burn & CO2 Reduction
Hybrid Electric Aircraft Design Space

Point studies done in the design space
EAP Drive Train

- Turbine Engine
- Generator
- AC to DC Conversion
- Distribution
- Motor Drive
- Motor
- Battery
- Propulsor
- Turbine Engine

This page does not contain any export controlled technical data
Drive Train Challenges

<table>
<thead>
<tr>
<th>Component</th>
<th>TODAY</th>
<th>Power Train</th>
</tr>
</thead>
<tbody>
<tr>
<td>Generator</td>
<td>90 %</td>
<td>96%</td>
</tr>
<tr>
<td>AC to DC Conversion</td>
<td>96 %</td>
<td>98.5%</td>
</tr>
<tr>
<td>Distribution Wiring & Switch Gear</td>
<td>50 KW/Kg</td>
<td>60%</td>
</tr>
<tr>
<td>Motor Drive</td>
<td>96 %</td>
<td>92%</td>
</tr>
<tr>
<td>Motor</td>
<td>92%</td>
<td></td>
</tr>
</tbody>
</table>

- **Turbine Engine**: 2 KW/Kg
- **AC to DC Conversion**: 10 KW/Kg
- **Distribution Wiring & Switch Gear**: 50 KW/Kg
- **Motor Drive**: 10 KW/Kg
- **Motor**: 5 KW/Kg

Battery: 150 Wh/Kg

Low emissions energy storage

Medium to Low Quality Waste Heat

- **Weight**: Heat Exchangers, Ducts, Plumbing
- **Ram Drag**: Battery cooling
- **Power**: Pumps, Fans, VCS?

Power Train

- **Weight**: EM Machines, PE & Distribution
- **High voltage**: switches and protection
- **Power**: Losses increase power and energy requirement, create heat

This page does not contain any export controlled technical data
Series Turboelectric Hybrid

Series hybrids include an electric drive that must buy its way on the system.

Series turbo-electric hybrid

![Graph showing Electric Drive Efficiency vs. Electric Drive Specific Power](image1)

Partial series turbo-electric hybrid

![Graph showing Electric Drive Efficiency vs. Electric Drive Specific Power](image2)

Electric Drive System

- Fan
- Motor
- MD
- Inv
- Gen
- LPC
- HPC
- Core
- HPT
- LPT
- Battery
- TMS
- Liquid Fuel

Propulsion Airframe Integration (PAI) Benefit

- Minimum
- Median
- Maximum

This page does not contain any export controlled technical data.
Electric Drive Train (EDT) Performance

Current development progressing toward 2.1 kW/kg @ 86%

<table>
<thead>
<tr>
<th>Components</th>
<th>Efficiency</th>
<th>Power Density</th>
<th>Efficiency</th>
<th>Power Density</th>
<th>Efficiency</th>
<th>Power Density</th>
</tr>
</thead>
<tbody>
<tr>
<td>Generator</td>
<td>90.0%</td>
<td>2</td>
<td>94.0%</td>
<td>4</td>
<td>96.0%</td>
<td>40</td>
</tr>
<tr>
<td>Rectifier</td>
<td>96.0%</td>
<td>10</td>
<td>98.0%</td>
<td>20</td>
<td>99.0%</td>
<td>40</td>
</tr>
<tr>
<td>Distribution</td>
<td>98.0%</td>
<td>50</td>
<td>98.5%</td>
<td>50</td>
<td>99.0%</td>
<td>100</td>
</tr>
<tr>
<td>Motor Drive</td>
<td>96.0%</td>
<td>10</td>
<td>98.0%</td>
<td>20</td>
<td>99.0%</td>
<td>40</td>
</tr>
<tr>
<td>Motor</td>
<td>92.0%</td>
<td>5</td>
<td>97.0%</td>
<td>13</td>
<td>98.0%</td>
<td>40</td>
</tr>
<tr>
<td>Thermal</td>
<td>92.0%</td>
<td>5</td>
<td>97.0%</td>
<td>13</td>
<td>98.0%</td>
<td>40</td>
</tr>
<tr>
<td>Total</td>
<td>75%</td>
<td>0.9</td>
<td>86%</td>
<td>2.1</td>
<td>91%</td>
<td>8.4</td>
</tr>
</tbody>
</table>

Today 0.9 kW/kg, 75%
Current Progress 2.1 kW/kg, 86%
Future Targets 8.4 kW/kg, 91%
Benefit of Improved EDT Performance

Future EDT improvements can enable PAI benefit

Series turbo-electric hybrid

Partial series turbo-electric hybrid

This page does not contain any export controlled technical data