Advanced Fuel Cycle Waste Management Considerations

December 4, 2020

Stuart T Arm, PhD
Senior Technical Advisor, Radiochemical Flowsheets
The Paradigm Delta

• Advanced fuel cycles are fundamentally different from today’s paradigm
 ▪ Calls for new ways to think about waste management
 ✓ Holistically think about processing, packaging, transportation, interim storage and disposal

• Molten Salt Reactors are the extreme example:
 ▪ Liquid versus traditional solid fuel
 ✓ Online fuel processing for neutronics management
 ✓ Noble gas and solids management
 ✓ Requires processing for stabilization
 ▪ Allow for accumulation of fission products
 ✓ Reactor components likely need replacement before fuel
 ▪ Low pressure with concomitant design differences to solid-fueled reactors
 ✓ Higher radiation fields

• Generally, advanced fuel cycles are characterized by higher burnup with concomitant higher fission product and actinide inventories
Waste Processing & Form

• Many options for waste processing and waste forms. How do we judge them?

• Criteria used to evaluate waste forms for defense HLW in 1979/80:

 ▪ Waste form performance
 ✓ Potential for minimizing leachability
 ✓ Suitability for prediction of long-term behavior
 ✓ Sensitivity of properties to radiation
 ✓ Sensitivity to thermal and mechanical history
 ✓ Potential for favorable geologic interactions
 ✓ Thermal conductivity

 ▪ Waste processing
 ✓ Potential for achieving a uniform product
 ✓ Potential for quality assurance for licensing and regulation
 ✓ Sensitivity to waste composition

 ▪ Technical maturity
 ✓ Not a formal criterion but influenced final selection for borosilicate glass
Waste Processing & Form

• Augment criteria with 40 years experience related to:
 ▪ Containment and confinement
 ▪ Criticality control for storage, transportation, and disposal
 ▪ Chemical and physical durability
 ▪ Thermal considerations
Waste Management R&D Strategy

• Adapt to current waste management infrastructure for easier implementation of advanced fuel cycles?
• Or challenge it to change to maximize benefit of advanced fuel cycles?
• Holistically consider:
 ▪ Processing
 ▪ Form
 ▪ Packaging
 ▪ Transportation
 ▪ Interim storage
 ▪ Disposal engineering
Potential Target Areas for Future MSR Waste Management R&D

• Reactor operations:
 ▪ Neutron moderator(s) tolerant to radiation and high temperatures (alternative to graphite) for application in variable spectrum MSRs
 ▪ New concepts for remote, long-handled tooling and radiation-resistant electronics
 ▪ Integrated capture and storage of fission product noble gases (e.g., radiation-tolerant sorbents)

• Waste processing:
 ▪ Salt dehalogenation processes
 ▪ Integration of lithium-7 and chlorine-37 recovery and recycle into waste processing approaches

• Waste forms
 ▪ Phosphate and silicate waste form evaluations for dehalogenated salt streams

• Fuel
 ▪ Strategies for chlorine-37 isotopic enrichment
Discussion
Advanced Fuel Cycle Waste Management Considerations

December 4, 2020

Stuart T Arm, PhD
Senior Technical Advisor, Radiochemical Flowsheets